Properties

Label 8-1053e4-1.1-c1e4-0-1
Degree $8$
Conductor $1.229\times 10^{12}$
Sign $1$
Analytic cond. $4998.29$
Root an. cond. $2.89969$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4-s − 4·7-s − 2·13-s + 4·16-s + 8·19-s + 10·25-s − 4·28-s − 4·31-s + 8·37-s − 16·43-s + 18·49-s − 2·52-s + 20·61-s + 11·64-s − 28·67-s − 40·73-s + 8·76-s + 8·79-s + 8·91-s + 20·97-s + 10·100-s + 8·103-s − 40·109-s − 16·112-s + 10·121-s − 4·124-s + 127-s + ⋯
L(s)  = 1  + 1/2·4-s − 1.51·7-s − 0.554·13-s + 16-s + 1.83·19-s + 2·25-s − 0.755·28-s − 0.718·31-s + 1.31·37-s − 2.43·43-s + 18/7·49-s − 0.277·52-s + 2.56·61-s + 11/8·64-s − 3.42·67-s − 4.68·73-s + 0.917·76-s + 0.900·79-s + 0.838·91-s + 2.03·97-s + 100-s + 0.788·103-s − 3.83·109-s − 1.51·112-s + 0.909·121-s − 0.359·124-s + 0.0887·127-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{16} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{16} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(3^{16} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(4998.29\)
Root analytic conductor: \(2.89969\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 3^{16} \cdot 13^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(1.206607104\)
\(L(\frac12)\) \(\approx\) \(1.206607104\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
13$C_2$ \( ( 1 + T + T^{2} )^{2} \)
good2$C_2^3$ \( 1 - T^{2} - 3 T^{4} - p^{2} T^{6} + p^{4} T^{8} \) 4.2.a_ab_a_ad
5$C_2^2$ \( ( 1 - p T^{2} + p^{2} T^{4} )^{2} \) 4.5.a_ak_a_cx
7$C_2^2$ \( ( 1 + 2 T - 3 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \) 4.7.e_ac_q_gh
11$C_2^3$ \( 1 - 10 T^{2} - 21 T^{4} - 10 p^{2} T^{6} + p^{4} T^{8} \) 4.11.a_ak_a_av
17$C_2^2$ \( ( 1 - 14 T^{2} + p^{2} T^{4} )^{2} \) 4.17.a_abc_a_bdu
19$C_2$ \( ( 1 - 2 T + p T^{2} )^{4} \) 4.19.ai_dw_asu_epa
23$C_2^3$ \( 1 + 2 T^{2} - 525 T^{4} + 2 p^{2} T^{6} + p^{4} T^{8} \) 4.23.a_c_a_auf
29$C_2^3$ \( 1 - 10 T^{2} - 741 T^{4} - 10 p^{2} T^{6} + p^{4} T^{8} \) 4.29.a_ak_a_abcn
31$C_2^2$ \( ( 1 + 2 T - 27 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \) 4.31.e_aby_q_ehn
37$C_2$ \( ( 1 - 2 T + p T^{2} )^{4} \) 4.37.ai_gq_abjk_ouw
41$C_2^3$ \( 1 - 34 T^{2} - 525 T^{4} - 34 p^{2} T^{6} + p^{4} T^{8} \) 4.41.a_abi_a_auf
43$C_2$ \( ( 1 - 5 T + p T^{2} )^{2}( 1 + 13 T + p T^{2} )^{2} \) 4.43.q_ec_bnk_ogx
47$C_2^3$ \( 1 + 14 T^{2} - 2013 T^{4} + 14 p^{2} T^{6} + p^{4} T^{8} \) 4.47.a_o_a_aczl
53$C_2$ \( ( 1 + p T^{2} )^{4} \) 4.53.a_ie_a_yyg
59$C_2^3$ \( 1 - 106 T^{2} + 7755 T^{4} - 106 p^{2} T^{6} + p^{4} T^{8} \) 4.59.a_aec_a_lmh
61$C_2^2$ \( ( 1 - 10 T + 39 T^{2} - 10 p T^{3} + p^{2} T^{4} )^{2} \) 4.61.au_gw_acyy_bfhz
67$C_2^2$ \( ( 1 + 14 T + 129 T^{2} + 14 p T^{3} + p^{2} T^{4} )^{2} \) 4.67.bc_rm_idc_cytn
71$C_2^2$ \( ( 1 + 130 T^{2} + p^{2} T^{4} )^{2} \) 4.71.a_ka_a_bnxu
73$C_2$ \( ( 1 + 10 T + p T^{2} )^{4} \) 4.73.bo_bii_swu_hjrq
79$C_2$ \( ( 1 - 17 T + p T^{2} )^{2}( 1 + 13 T + p T^{2} )^{2} \) 4.79.ai_aeg_aey_bcbz
83$C_2^3$ \( 1 - 58 T^{2} - 3525 T^{4} - 58 p^{2} T^{6} + p^{4} T^{8} \) 4.83.a_acg_a_affp
89$C_2^2$ \( ( 1 + 130 T^{2} + p^{2} T^{4} )^{2} \) 4.89.a_ka_a_bwli
97$C_2^2$ \( ( 1 - 10 T + 3 T^{2} - 10 p T^{3} + p^{2} T^{4} )^{2} \) 4.97.au_ec_acyy_ceoh
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.16383027361883716861421423649, −6.81212599430114716819481596758, −6.79266204156901055362942714101, −6.44566810446066994817835562061, −6.19913530600869018581305081790, −5.97692031537625201361094346871, −5.79219159593553451082544357016, −5.55531485142104464988690298879, −5.23111765031276849190284604383, −5.19583723703184579293876340547, −4.84507190469352194562572237324, −4.48259994347699662815431413041, −4.42181702344029603547187654249, −3.92555349760032697002934419721, −3.60936104244745954265496485949, −3.48665465979800042378836803340, −3.20790951191979285032723499507, −3.02844547110334376926926724354, −2.67970593258259612319484830021, −2.38072212126293163029197944523, −2.36793952614415448231409789973, −1.38525139558497184314692634632, −1.34449922770271394112339018246, −1.07819062623861571055832585069, −0.25336292695304605514231517887, 0.25336292695304605514231517887, 1.07819062623861571055832585069, 1.34449922770271394112339018246, 1.38525139558497184314692634632, 2.36793952614415448231409789973, 2.38072212126293163029197944523, 2.67970593258259612319484830021, 3.02844547110334376926926724354, 3.20790951191979285032723499507, 3.48665465979800042378836803340, 3.60936104244745954265496485949, 3.92555349760032697002934419721, 4.42181702344029603547187654249, 4.48259994347699662815431413041, 4.84507190469352194562572237324, 5.19583723703184579293876340547, 5.23111765031276849190284604383, 5.55531485142104464988690298879, 5.79219159593553451082544357016, 5.97692031537625201361094346871, 6.19913530600869018581305081790, 6.44566810446066994817835562061, 6.79266204156901055362942714101, 6.81212599430114716819481596758, 7.16383027361883716861421423649

Graph of the $Z$-function along the critical line