L(s) = 1 | + (−0.809 − 1.40i)2-s + (−0.309 + 0.535i)4-s + (−1.30 + 2.26i)5-s + (−1.11 − 1.93i)7-s − 2.23·8-s + 4.23·10-s + (0.427 + 0.739i)11-s + (0.5 − 0.866i)13-s + (−1.80 + 3.13i)14-s + (2.42 + 4.20i)16-s + 4.61·17-s − 4.09·19-s + (−0.809 − 1.40i)20-s + (0.690 − 1.19i)22-s + (−3.42 + 5.93i)23-s + ⋯ |
L(s) = 1 | + (−0.572 − 0.990i)2-s + (−0.154 + 0.267i)4-s + (−0.585 + 1.01i)5-s + (−0.422 − 0.731i)7-s − 0.790·8-s + 1.33·10-s + (0.128 + 0.223i)11-s + (0.138 − 0.240i)13-s + (−0.483 + 0.837i)14-s + (0.606 + 1.05i)16-s + 1.12·17-s − 0.938·19-s + (−0.180 − 0.313i)20-s + (0.147 − 0.255i)22-s + (−0.714 + 1.23i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1053 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.939 + 0.342i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1053 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.939 + 0.342i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.8547812895\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8547812895\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 13 | \( 1 + (-0.5 + 0.866i)T \) |
good | 2 | \( 1 + (0.809 + 1.40i)T + (-1 + 1.73i)T^{2} \) |
| 5 | \( 1 + (1.30 - 2.26i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (1.11 + 1.93i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-0.427 - 0.739i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 - 4.61T + 17T^{2} \) |
| 19 | \( 1 + 4.09T + 19T^{2} \) |
| 23 | \( 1 + (3.42 - 5.93i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-2.35 - 4.07i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-4.23 + 7.33i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 6.23T + 37T^{2} \) |
| 41 | \( 1 + (-0.118 + 0.204i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-5.66 - 9.80i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (0.545 + 0.944i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 2.14T + 53T^{2} \) |
| 59 | \( 1 + (-3.11 + 5.40i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-7.59 - 13.1i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (2.54 - 4.40i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 0.291T + 71T^{2} \) |
| 73 | \( 1 - 3.38T + 73T^{2} \) |
| 79 | \( 1 + (1.66 + 2.88i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-6.97 - 12.0i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 - 17.2T + 89T^{2} \) |
| 97 | \( 1 + (1.23 + 2.14i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.02570106590322773224680123082, −9.455981076906472004688212586582, −8.210871030846761009756302969797, −7.50304768491293138284832363190, −6.58004536521547902269746368751, −5.76167134723036797441883832825, −4.09232335375096601640881974097, −3.38574419793455908253200983173, −2.46930080795760690065653155111, −0.988458572960908512484822063893,
0.60228722596938259221548317735, 2.56508386823486719961682426452, 3.85427356478668893171780606440, 4.93622610225011186310293410642, 5.98373509508078561173658031372, 6.52857293439579162436400520968, 7.68222753494444547003909146391, 8.406599587980975541146937259817, 8.742731159673010426061096686965, 9.594921163410263239009185042473