Properties

Label 2-1053-13.12-c1-0-32
Degree $2$
Conductor $1053$
Sign $0.806 + 0.590i$
Analytic cond. $8.40824$
Root an. cond. $2.89969$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.559i·2-s + 1.68·4-s + 2.18i·5-s − 3.09i·7-s − 2.06i·8-s + 1.22·10-s − 0.559i·11-s + (2.90 + 2.12i)13-s − 1.73·14-s + 2.22·16-s + 3.30·17-s − 0.688i·19-s + 3.68i·20-s − 0.312·22-s − 2.11·23-s + ⋯
L(s)  = 1  − 0.395i·2-s + 0.843·4-s + 0.977i·5-s − 1.17i·7-s − 0.728i·8-s + 0.386·10-s − 0.168i·11-s + (0.806 + 0.590i)13-s − 0.462·14-s + 0.555·16-s + 0.802·17-s − 0.157i·19-s + 0.824i·20-s − 0.0666·22-s − 0.441·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1053 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.806 + 0.590i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1053 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.806 + 0.590i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1053\)    =    \(3^{4} \cdot 13\)
Sign: $0.806 + 0.590i$
Analytic conductor: \(8.40824\)
Root analytic conductor: \(2.89969\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1053} (649, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1053,\ (\ :1/2),\ 0.806 + 0.590i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.126605428\)
\(L(\frac12)\) \(\approx\) \(2.126605428\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
13 \( 1 + (-2.90 - 2.12i)T \)
good2 \( 1 + 0.559iT - 2T^{2} \)
5 \( 1 - 2.18iT - 5T^{2} \)
7 \( 1 + 3.09iT - 7T^{2} \)
11 \( 1 + 0.559iT - 11T^{2} \)
17 \( 1 - 3.30T + 17T^{2} \)
19 \( 1 + 0.688iT - 19T^{2} \)
23 \( 1 + 2.11T + 23T^{2} \)
29 \( 1 + 3.84T + 29T^{2} \)
31 \( 1 + 6.66iT - 31T^{2} \)
37 \( 1 + 5.91iT - 37T^{2} \)
41 \( 1 - 7.42iT - 41T^{2} \)
43 \( 1 - 3.46T + 43T^{2} \)
47 \( 1 - 10.2iT - 47T^{2} \)
53 \( 1 - 14.3T + 53T^{2} \)
59 \( 1 - 4.19iT - 59T^{2} \)
61 \( 1 + 2.31T + 61T^{2} \)
67 \( 1 + 5.72iT - 67T^{2} \)
71 \( 1 + 16.0iT - 71T^{2} \)
73 \( 1 - 15.8iT - 73T^{2} \)
79 \( 1 - 1.28T + 79T^{2} \)
83 \( 1 + 8.42iT - 83T^{2} \)
89 \( 1 + 6.99iT - 89T^{2} \)
97 \( 1 - 9.89iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.13183476725521803547127506184, −9.247786834810793161119167830635, −7.81470497987804110194354740596, −7.34733261499230640343958282091, −6.51322332780445174827899826198, −5.84578974163524987665987301654, −4.14716151799529893181323130292, −3.49481685988126692689569622977, −2.44839645983529815226697564299, −1.13435173846404642271632273995, 1.36164990581027936881305952796, 2.52987403247356582018289234884, 3.70553970237139751092220977804, 5.33806724394332599236382654272, 5.49673657274705610182092123581, 6.54266457413703949399590583362, 7.55332157516560662020317508527, 8.494009209605531837023812425399, 8.786648039911350841831331774413, 9.993574711119466225687645324197

Graph of the $Z$-function along the critical line