L(s) = 1 | + 2.61i·2-s − 4.85·4-s + 2.61i·5-s + 4.85i·7-s − 7.47i·8-s − 6.85·10-s − 3.38i·11-s + (−2 − 3i)13-s − 12.7·14-s + 9.85·16-s − 3·17-s + 6.70i·19-s − 12.7i·20-s + 8.85·22-s − 1.14·23-s + ⋯ |
L(s) = 1 | + 1.85i·2-s − 2.42·4-s + 1.17i·5-s + 1.83i·7-s − 2.64i·8-s − 2.16·10-s − 1.01i·11-s + (−0.554 − 0.832i)13-s − 3.39·14-s + 2.46·16-s − 0.727·17-s + 1.53i·19-s − 2.84i·20-s + 1.88·22-s − 0.238·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1053 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.554 + 0.832i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1053 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.554 + 0.832i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.7358834222\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7358834222\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 13 | \( 1 + (2 + 3i)T \) |
good | 2 | \( 1 - 2.61iT - 2T^{2} \) |
| 5 | \( 1 - 2.61iT - 5T^{2} \) |
| 7 | \( 1 - 4.85iT - 7T^{2} \) |
| 11 | \( 1 + 3.38iT - 11T^{2} \) |
| 17 | \( 1 + 3T + 17T^{2} \) |
| 19 | \( 1 - 6.70iT - 19T^{2} \) |
| 23 | \( 1 + 1.14T + 23T^{2} \) |
| 29 | \( 1 + 1.85T + 29T^{2} \) |
| 31 | \( 1 - 1.85iT - 31T^{2} \) |
| 37 | \( 1 - 1.14iT - 37T^{2} \) |
| 41 | \( 1 + 1.09iT - 41T^{2} \) |
| 43 | \( 1 - 8.70T + 43T^{2} \) |
| 47 | \( 1 - 1.47iT - 47T^{2} \) |
| 53 | \( 1 - 6T + 53T^{2} \) |
| 59 | \( 1 + 11.9iT - 59T^{2} \) |
| 61 | \( 1 + 2.85T + 61T^{2} \) |
| 67 | \( 1 - 4.14iT - 67T^{2} \) |
| 71 | \( 1 - 3.76iT - 71T^{2} \) |
| 73 | \( 1 - 6.70iT - 73T^{2} \) |
| 79 | \( 1 + T + 79T^{2} \) |
| 83 | \( 1 - 1.47iT - 83T^{2} \) |
| 89 | \( 1 + 6.38iT - 89T^{2} \) |
| 97 | \( 1 + 9.70iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.32060476154012964946934800709, −9.425847004904816243490321494239, −8.605670854703892321756188512918, −8.083846759164850757599275131895, −7.20264008361883384888800778776, −6.17693665638201299434087223107, −5.88032173625355434476014638914, −5.10538344993652355935536789997, −3.64509898056970800350878528431, −2.56590474484180694495779948606,
0.35054361063876387162813206069, 1.38703611336561299415088507410, 2.47089694927021293220025756260, 4.02116971063467184599825523445, 4.41185230553677473591920755164, 4.99208286788931353351411261474, 6.88266494470479195649624525152, 7.71246386463547796851859543210, 9.001272674711060797336676656423, 9.323763006511920532043609210899