Properties

Label 2-1050-1.1-c3-0-52
Degree $2$
Conductor $1050$
Sign $-1$
Analytic cond. $61.9520$
Root an. cond. $7.87095$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 3·3-s + 4·4-s − 6·6-s + 7·7-s + 8·8-s + 9·9-s + 3·11-s − 12·12-s − 4·13-s + 14·14-s + 16·16-s − 54·17-s + 18·18-s − 148·19-s − 21·21-s + 6·22-s − 15·23-s − 24·24-s − 8·26-s − 27·27-s + 28·28-s − 69·29-s + 146·31-s + 32·32-s − 9·33-s − 108·34-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.408·6-s + 0.377·7-s + 0.353·8-s + 1/3·9-s + 0.0822·11-s − 0.288·12-s − 0.0853·13-s + 0.267·14-s + 1/4·16-s − 0.770·17-s + 0.235·18-s − 1.78·19-s − 0.218·21-s + 0.0581·22-s − 0.135·23-s − 0.204·24-s − 0.0603·26-s − 0.192·27-s + 0.188·28-s − 0.441·29-s + 0.845·31-s + 0.176·32-s − 0.0474·33-s − 0.544·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1050 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1050 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1050\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 7\)
Sign: $-1$
Analytic conductor: \(61.9520\)
Root analytic conductor: \(7.87095\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1050,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - p T \)
3 \( 1 + p T \)
5 \( 1 \)
7 \( 1 - p T \)
good11 \( 1 - 3 T + p^{3} T^{2} \)
13 \( 1 + 4 T + p^{3} T^{2} \)
17 \( 1 + 54 T + p^{3} T^{2} \)
19 \( 1 + 148 T + p^{3} T^{2} \)
23 \( 1 + 15 T + p^{3} T^{2} \)
29 \( 1 + 69 T + p^{3} T^{2} \)
31 \( 1 - 146 T + p^{3} T^{2} \)
37 \( 1 + 19 T + p^{3} T^{2} \)
41 \( 1 + 24 T + p^{3} T^{2} \)
43 \( 1 - 29 T + p^{3} T^{2} \)
47 \( 1 - 228 T + p^{3} T^{2} \)
53 \( 1 - 174 T + p^{3} T^{2} \)
59 \( 1 + 732 T + p^{3} T^{2} \)
61 \( 1 + 220 T + p^{3} T^{2} \)
67 \( 1 - 11 T + p^{3} T^{2} \)
71 \( 1 + 429 T + p^{3} T^{2} \)
73 \( 1 + 910 T + p^{3} T^{2} \)
79 \( 1 + 889 T + p^{3} T^{2} \)
83 \( 1 - 78 T + p^{3} T^{2} \)
89 \( 1 + 960 T + p^{3} T^{2} \)
97 \( 1 + 550 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.080092444301629143177282181403, −8.225824395405727375514973435901, −7.19975290076108623472897281059, −6.40656102382541542719325650466, −5.70489927379339248664058328170, −4.60505674122055693810162266028, −4.11843806398697833885320265686, −2.66200470265353487074124269293, −1.59467517800723947711890097254, 0, 1.59467517800723947711890097254, 2.66200470265353487074124269293, 4.11843806398697833885320265686, 4.60505674122055693810162266028, 5.70489927379339248664058328170, 6.40656102382541542719325650466, 7.19975290076108623472897281059, 8.225824395405727375514973435901, 9.080092444301629143177282181403

Graph of the $Z$-function along the critical line