| L(s) = 1 | + (−0.707 + 1.22i)2-s + (1.5 − 0.866i)3-s + (−0.999 − 1.73i)4-s + 2.44i·6-s + (−2.94 − 6.34i)7-s + 2.82·8-s + (1.5 − 2.59i)9-s + (−8.87 − 15.3i)11-s + (−2.99 − 1.73i)12-s − 8.10i·13-s + (9.86 + 0.879i)14-s + (−2.00 + 3.46i)16-s + (6.81 − 3.93i)17-s + (2.12 + 3.67i)18-s + (17.5 + 10.1i)19-s + ⋯ |
| L(s) = 1 | + (−0.353 + 0.612i)2-s + (0.5 − 0.288i)3-s + (−0.249 − 0.433i)4-s + 0.408i·6-s + (−0.421 − 0.907i)7-s + 0.353·8-s + (0.166 − 0.288i)9-s + (−0.806 − 1.39i)11-s + (−0.249 − 0.144i)12-s − 0.623i·13-s + (0.704 + 0.0628i)14-s + (−0.125 + 0.216i)16-s + (0.401 − 0.231i)17-s + (0.117 + 0.204i)18-s + (0.926 + 0.534i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1050 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.952 + 0.303i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1050 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.952 + 0.303i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{3}{2})\) |
\(\approx\) |
\(0.4806836371\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.4806836371\) |
| \(L(2)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (0.707 - 1.22i)T \) |
| 3 | \( 1 + (-1.5 + 0.866i)T \) |
| 5 | \( 1 \) |
| 7 | \( 1 + (2.94 + 6.34i)T \) |
| good | 11 | \( 1 + (8.87 + 15.3i)T + (-60.5 + 104. i)T^{2} \) |
| 13 | \( 1 + 8.10iT - 169T^{2} \) |
| 17 | \( 1 + (-6.81 + 3.93i)T + (144.5 - 250. i)T^{2} \) |
| 19 | \( 1 + (-17.5 - 10.1i)T + (180.5 + 312. i)T^{2} \) |
| 23 | \( 1 + (16.2 - 28.2i)T + (-264.5 - 458. i)T^{2} \) |
| 29 | \( 1 + 25.0T + 841T^{2} \) |
| 31 | \( 1 + (46.0 - 26.5i)T + (480.5 - 832. i)T^{2} \) |
| 37 | \( 1 + (21.7 - 37.7i)T + (-684.5 - 1.18e3i)T^{2} \) |
| 41 | \( 1 + 70.3iT - 1.68e3T^{2} \) |
| 43 | \( 1 - 2.43T + 1.84e3T^{2} \) |
| 47 | \( 1 + (-13.3 - 7.69i)T + (1.10e3 + 1.91e3i)T^{2} \) |
| 53 | \( 1 + (-25.4 - 44.0i)T + (-1.40e3 + 2.43e3i)T^{2} \) |
| 59 | \( 1 + (-22.9 + 13.2i)T + (1.74e3 - 3.01e3i)T^{2} \) |
| 61 | \( 1 + (28.7 + 16.6i)T + (1.86e3 + 3.22e3i)T^{2} \) |
| 67 | \( 1 + (-49.9 - 86.4i)T + (-2.24e3 + 3.88e3i)T^{2} \) |
| 71 | \( 1 + 97.0T + 5.04e3T^{2} \) |
| 73 | \( 1 + (46.7 - 27.0i)T + (2.66e3 - 4.61e3i)T^{2} \) |
| 79 | \( 1 + (-37.3 + 64.7i)T + (-3.12e3 - 5.40e3i)T^{2} \) |
| 83 | \( 1 + 85.2iT - 6.88e3T^{2} \) |
| 89 | \( 1 + (115. + 66.5i)T + (3.96e3 + 6.85e3i)T^{2} \) |
| 97 | \( 1 + 49.9iT - 9.40e3T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.212633044201927018616672668979, −8.392920160530435485294985491152, −7.53917748153783818980275629814, −7.23205266570556153114434577117, −5.84680595840627078931122363323, −5.40493511204102953304274981732, −3.75235373394224225997345303279, −3.13408947449264557521308337633, −1.38034133476129368541308579182, −0.15471428119657618314729528479,
1.92229738159327407627687638758, 2.57317902991794281105626217371, 3.72281219866543927004819731377, 4.72903052254439065551064871629, 5.66883343064099734145053454255, 6.99810788200585273408201801530, 7.75031674816749091426793415430, 8.651811553095191221435652262323, 9.527663888296676813698909501487, 9.777544219385894341676689459662