L(s) = 1 | + (0.866 + 0.5i)2-s + (1.52 + 0.824i)3-s + (0.499 + 0.866i)4-s + (0.907 + 1.47i)6-s + (−2.27 − 1.35i)7-s + 0.999i·8-s + (1.64 + 2.51i)9-s + (2.84 − 1.64i)11-s + (0.0481 + 1.73i)12-s + 5.91i·13-s + (−1.29 − 2.30i)14-s + (−0.5 + 0.866i)16-s + (1.20 + 2.08i)17-s + (0.166 + 2.99i)18-s + (4.77 + 2.75i)19-s + ⋯ |
L(s) = 1 | + (0.612 + 0.353i)2-s + (0.879 + 0.475i)3-s + (0.249 + 0.433i)4-s + (0.370 + 0.602i)6-s + (−0.859 − 0.511i)7-s + 0.353i·8-s + (0.547 + 0.836i)9-s + (0.857 − 0.495i)11-s + (0.0138 + 0.499i)12-s + 1.64i·13-s + (−0.345 − 0.617i)14-s + (−0.125 + 0.216i)16-s + (0.291 + 0.504i)17-s + (0.0392 + 0.706i)18-s + (1.09 + 0.632i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1050 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.112 - 0.993i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1050 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.112 - 0.993i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.961199427\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.961199427\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.866 - 0.5i)T \) |
| 3 | \( 1 + (-1.52 - 0.824i)T \) |
| 5 | \( 1 \) |
| 7 | \( 1 + (2.27 + 1.35i)T \) |
good | 11 | \( 1 + (-2.84 + 1.64i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 - 5.91iT - 13T^{2} \) |
| 17 | \( 1 + (-1.20 - 2.08i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-4.77 - 2.75i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (5.62 + 3.24i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 3.80iT - 29T^{2} \) |
| 31 | \( 1 + (-4.50 + 2.60i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (0.940 - 1.62i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 - 0.103T + 41T^{2} \) |
| 43 | \( 1 - 1.48T + 43T^{2} \) |
| 47 | \( 1 + (-6.23 + 10.7i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (2.11 - 1.21i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (1.82 + 3.16i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (12.3 + 7.11i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (1.67 + 2.90i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 13.9iT - 71T^{2} \) |
| 73 | \( 1 + (-7.02 + 4.05i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (4.57 - 7.92i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 6.54T + 83T^{2} \) |
| 89 | \( 1 + (-5.62 + 9.73i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 7.90iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.911557533749818929096651775595, −9.284212671569731668517684818347, −8.474317005204779263026222935032, −7.54079049862301209250815923052, −6.69289980740189232139952771343, −5.97180525897280979729519168818, −4.57458863989362262562320567764, −3.87105789612522725339033209473, −3.22445053338626450641621836539, −1.79262740527511672000413350637,
1.08006415787822087069850303206, 2.59226896713619905375126993828, 3.17491301622964490046145718464, 4.15863697787011233481049279899, 5.49694920756939175025500345902, 6.25463079632535938220601591285, 7.24646685356954657007035829481, 7.937656942235186206214890488735, 9.117302010909278487620114404552, 9.661377667463089221855880330972