L(s) = 1 | + (−0.866 + 0.5i)2-s + (−0.396 − 1.68i)3-s + (0.499 − 0.866i)4-s + (1.18 + 1.26i)6-s + (−0.866 − 2.5i)7-s + 0.999i·8-s + (−2.68 + 1.33i)9-s + (3.68 + 2.12i)11-s + (−1.65 − 0.499i)12-s + 2i·13-s + (2 + 1.73i)14-s + (−0.5 − 0.866i)16-s + (3.31 − 5.74i)17-s + (1.65 − 2.5i)18-s + (3 − 1.73i)19-s + ⋯ |
L(s) = 1 | + (−0.612 + 0.353i)2-s + (−0.228 − 0.973i)3-s + (0.249 − 0.433i)4-s + (0.484 + 0.515i)6-s + (−0.327 − 0.944i)7-s + 0.353i·8-s + (−0.895 + 0.445i)9-s + (1.11 + 0.641i)11-s + (−0.478 − 0.144i)12-s + 0.554i·13-s + (0.534 + 0.462i)14-s + (−0.125 − 0.216i)16-s + (0.804 − 1.39i)17-s + (0.390 − 0.589i)18-s + (0.688 − 0.397i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1050 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.348 + 0.937i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1050 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.348 + 0.937i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.9400248886\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9400248886\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.866 - 0.5i)T \) |
| 3 | \( 1 + (0.396 + 1.68i)T \) |
| 5 | \( 1 \) |
| 7 | \( 1 + (0.866 + 2.5i)T \) |
good | 11 | \( 1 + (-3.68 - 2.12i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 2iT - 13T^{2} \) |
| 17 | \( 1 + (-3.31 + 5.74i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-3 + 1.73i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-3.78 + 2.18i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 3.31iT - 29T^{2} \) |
| 31 | \( 1 + (2.05 + 1.18i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (5.84 + 10.1i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 1.62T + 41T^{2} \) |
| 43 | \( 1 + 11.0T + 43T^{2} \) |
| 47 | \( 1 + (-0.939 - 1.62i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (1.18 + 0.686i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (2.05 - 3.56i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (2.44 - 1.40i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (3.78 - 6.55i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 1.87iT - 71T^{2} \) |
| 73 | \( 1 + (1.73 + i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (4.05 + 7.02i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 1.43T + 83T^{2} \) |
| 89 | \( 1 + (2.18 + 3.78i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 2.11iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.476513431117373235963821144264, −8.919919549229431211138560139711, −7.67014987410818904997512712910, −7.11660194052786500793549667808, −6.72447880913030459562267695271, −5.60905864344730590132445214302, −4.52591595963823703131590078089, −3.11964157602731953243678227444, −1.68111627125191654000801435763, −0.58721760981048303293465857233,
1.42039078835561181707089364489, 3.23773255808426764563421952153, 3.51286394885295589113720397164, 5.05981742844273865678120527046, 5.87154759363657627973616336106, 6.66381852509821411760885767597, 8.123583040832207848977252843009, 8.698063015885179920828433767214, 9.403027035918683373567541335711, 10.09910373586373652019574668674