Properties

Label 8-1050e4-1.1-c1e4-0-6
Degree $8$
Conductor $1.216\times 10^{12}$
Sign $1$
Analytic cond. $4941.57$
Root an. cond. $2.89556$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4-s + 9-s + 2·11-s − 6·19-s + 32·29-s + 4·31-s + 36-s − 44·41-s + 2·44-s − 2·49-s + 8·59-s − 64-s − 24·71-s − 6·76-s − 16·79-s − 20·89-s + 2·99-s + 12·109-s + 32·116-s + 23·121-s + 4·124-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + ⋯
L(s)  = 1  + 1/2·4-s + 1/3·9-s + 0.603·11-s − 1.37·19-s + 5.94·29-s + 0.718·31-s + 1/6·36-s − 6.87·41-s + 0.301·44-s − 2/7·49-s + 1.04·59-s − 1/8·64-s − 2.84·71-s − 0.688·76-s − 1.80·79-s − 2.11·89-s + 0.201·99-s + 1.14·109-s + 2.97·116-s + 2.09·121-s + 0.359·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 5^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 5^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 3^{4} \cdot 5^{8} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(4941.57\)
Root analytic conductor: \(2.89556\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 3^{4} \cdot 5^{8} \cdot 7^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(1.633626001\)
\(L(\frac12)\) \(\approx\) \(1.633626001\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2^2$ \( 1 - T^{2} + T^{4} \)
3$C_2^2$ \( 1 - T^{2} + T^{4} \)
5 \( 1 \)
7$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
good11$C_2^2$ \( ( 1 - T - 10 T^{2} - p T^{3} + p^{2} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 - 25 T^{2} + p^{2} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 + p T^{2} + p^{2} T^{4} )^{2} \)
19$C_2^2$ \( ( 1 + 3 T - 10 T^{2} + 3 p T^{3} + p^{2} T^{4} )^{2} \)
23$C_2^3$ \( 1 - 3 T^{2} - 520 T^{4} - 3 p^{2} T^{6} + p^{4} T^{8} \)
29$C_2$ \( ( 1 - 8 T + p T^{2} )^{4} \)
31$C_2^2$ \( ( 1 - 2 T - 27 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
37$C_2^2$$\times$$C_2^2$ \( ( 1 - 73 T^{2} + p^{2} T^{4} )( 1 + 26 T^{2} + p^{2} T^{4} ) \)
41$C_2$ \( ( 1 + 11 T + p T^{2} )^{4} \)
43$C_2^2$ \( ( 1 - 22 T^{2} + p^{2} T^{4} )^{2} \)
47$C_2^3$ \( 1 + 69 T^{2} + 2552 T^{4} + 69 p^{2} T^{6} + p^{4} T^{8} \)
53$C_2^3$ \( 1 - 15 T^{2} - 2584 T^{4} - 15 p^{2} T^{6} + p^{4} T^{8} \)
59$C_2^2$ \( ( 1 - 4 T - 43 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
61$C_2^2$ \( ( 1 - p T^{2} + p^{2} T^{4} )^{2} \)
67$C_2^2$ \( ( 1 + p T^{2} + p^{2} T^{4} )^{2} \)
71$C_2$ \( ( 1 + 6 T + p T^{2} )^{4} \)
73$C_2^2$$\times$$C_2^2$ \( ( 1 - 16 T + 183 T^{2} - 16 p T^{3} + p^{2} T^{4} )( 1 + 16 T + 183 T^{2} + 16 p T^{3} + p^{2} T^{4} ) \)
79$C_2^2$ \( ( 1 + 8 T - 15 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 - 102 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 + 10 T + 11 T^{2} + 10 p T^{3} + p^{2} T^{4} )^{2} \)
97$C_2^2$ \( ( 1 + 62 T^{2} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.10673217437251471965409218023, −6.75345232711337025105040038236, −6.61626681642642048571109342739, −6.51719435760704275130596534428, −6.27247098058301995790817486838, −6.25656280712652071989658912377, −5.75560105492558559235404173295, −5.61029690597784776309569791196, −5.06810510057466644561692028371, −4.95534410521548148420021826264, −4.71165555941424503048609533944, −4.63722305760108412589690753785, −4.55530121253917408076947501295, −3.96160036411659492744353436473, −3.78484761449542754336819170611, −3.54871004938197672819202630355, −3.15955263528094768091559034885, −2.81298008647284192148154497594, −2.76287387021183708056156735574, −2.54925699733949294482816926016, −1.93264561848697945462907098021, −1.65171150572162735313917037641, −1.26861404259426359437036417380, −1.18596051240309613697934638312, −0.27335889485403576172885470641, 0.27335889485403576172885470641, 1.18596051240309613697934638312, 1.26861404259426359437036417380, 1.65171150572162735313917037641, 1.93264561848697945462907098021, 2.54925699733949294482816926016, 2.76287387021183708056156735574, 2.81298008647284192148154497594, 3.15955263528094768091559034885, 3.54871004938197672819202630355, 3.78484761449542754336819170611, 3.96160036411659492744353436473, 4.55530121253917408076947501295, 4.63722305760108412589690753785, 4.71165555941424503048609533944, 4.95534410521548148420021826264, 5.06810510057466644561692028371, 5.61029690597784776309569791196, 5.75560105492558559235404173295, 6.25656280712652071989658912377, 6.27247098058301995790817486838, 6.51719435760704275130596534428, 6.61626681642642048571109342739, 6.75345232711337025105040038236, 7.10673217437251471965409218023

Graph of the $Z$-function along the critical line