L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.5 − 0.866i)3-s + (−0.499 − 0.866i)4-s − 0.999·6-s + (2 − 1.73i)7-s − 0.999·8-s + (−0.499 + 0.866i)9-s + (2.5 + 4.33i)11-s + (−0.499 + 0.866i)12-s + 5·13-s + (−0.499 − 2.59i)14-s + (−0.5 + 0.866i)16-s + (−2 − 3.46i)17-s + (0.499 + 0.866i)18-s + (3.5 − 6.06i)19-s + ⋯ |
L(s) = 1 | + (0.353 − 0.612i)2-s + (−0.288 − 0.499i)3-s + (−0.249 − 0.433i)4-s − 0.408·6-s + (0.755 − 0.654i)7-s − 0.353·8-s + (−0.166 + 0.288i)9-s + (0.753 + 1.30i)11-s + (−0.144 + 0.249i)12-s + 1.38·13-s + (−0.133 − 0.694i)14-s + (−0.125 + 0.216i)16-s + (−0.485 − 0.840i)17-s + (0.117 + 0.204i)18-s + (0.802 − 1.39i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1050 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.266 + 0.963i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1050 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.266 + 0.963i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.980898437\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.980898437\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 + 0.866i)T \) |
| 3 | \( 1 + (0.5 + 0.866i)T \) |
| 5 | \( 1 \) |
| 7 | \( 1 + (-2 + 1.73i)T \) |
good | 11 | \( 1 + (-2.5 - 4.33i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 5T + 13T^{2} \) |
| 17 | \( 1 + (2 + 3.46i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-3.5 + 6.06i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.5 + 0.866i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 29T^{2} \) |
| 31 | \( 1 + (-1 - 1.73i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-0.5 + 0.866i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 - 5T + 41T^{2} \) |
| 43 | \( 1 + 12T + 43T^{2} \) |
| 47 | \( 1 + (5.5 - 9.52i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (4.5 + 7.79i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (2 + 3.46i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (2 - 3.46i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (6 + 10.3i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 2T + 71T^{2} \) |
| 73 | \( 1 + (-5 - 8.66i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-6 + 10.3i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 12T + 83T^{2} \) |
| 89 | \( 1 + (7 - 12.1i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 8T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.714730648138680166752435378692, −9.013140524327360030490668952504, −7.945666662056008116658145563784, −7.00176297916936316813590296574, −6.41198847974206336309067270989, −5.00057552894100604437023974583, −4.53683789271397133296162415601, −3.32940374808960685605755158848, −1.94506973807200219791793877030, −0.982088696251283538707303216707,
1.44939202141652908605457048114, 3.34044381846113541302232537787, 3.96873437673761699233149625100, 5.14352390995270661629306157375, 6.00367422045603836064956133651, 6.31862866342823298207153928087, 7.84631061255104328484130762315, 8.522554300842937996223940444423, 9.004742155934751503145198306489, 10.17684586192007170472353280803