L(s) = 1 | + (−0.5 − 0.866i)2-s + (−0.5 + 0.866i)3-s + (−0.499 + 0.866i)4-s + 0.999·6-s + (2.5 + 0.866i)7-s + 0.999·8-s + (−0.499 − 0.866i)9-s + (2 − 3.46i)11-s + (−0.499 − 0.866i)12-s − 4·13-s + (−0.500 − 2.59i)14-s + (−0.5 − 0.866i)16-s + (1.5 − 2.59i)17-s + (−0.499 + 0.866i)18-s + (−3 − 5.19i)19-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (−0.288 + 0.499i)3-s + (−0.249 + 0.433i)4-s + 0.408·6-s + (0.944 + 0.327i)7-s + 0.353·8-s + (−0.166 − 0.288i)9-s + (0.603 − 1.04i)11-s + (−0.144 − 0.249i)12-s − 1.10·13-s + (−0.133 − 0.694i)14-s + (−0.125 − 0.216i)16-s + (0.363 − 0.630i)17-s + (−0.117 + 0.204i)18-s + (−0.688 − 1.19i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1050 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.605 + 0.795i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1050 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.605 + 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.237792940\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.237792940\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 + 0.866i)T \) |
| 3 | \( 1 + (0.5 - 0.866i)T \) |
| 5 | \( 1 \) |
| 7 | \( 1 + (-2.5 - 0.866i)T \) |
good | 11 | \( 1 + (-2 + 3.46i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + 4T + 13T^{2} \) |
| 17 | \( 1 + (-1.5 + 2.59i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (3 + 5.19i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-3.5 - 6.06i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 4T + 29T^{2} \) |
| 31 | \( 1 + (-2.5 + 4.33i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-1 - 1.73i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 7T + 41T^{2} \) |
| 43 | \( 1 + 2T + 43T^{2} \) |
| 47 | \( 1 + (-0.5 - 0.866i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (1 - 1.73i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-7 + 12.1i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (6 + 10.3i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-6 + 10.3i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 9T + 71T^{2} \) |
| 73 | \( 1 + (-3 + 5.19i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-8.5 - 14.7i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 4T + 83T^{2} \) |
| 89 | \( 1 + (-3.5 - 6.06i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 7T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.645714103699888512143245638926, −9.218124413542778166862604231003, −8.320535773051118024025357695872, −7.49599240244086828584998224633, −6.36964883448788921815288711631, −5.17566072772281298604067695664, −4.61819134751991441762733460103, −3.37433000948909397934906075152, −2.34167337783333396338432849383, −0.78480277556083428812885184059,
1.19167406675078657678597177391, 2.30002640635803042515913989188, 4.23188269998366353739127508934, 4.85668686156299267427513677500, 5.93834939581333842638247915827, 6.85450273918648037383334405631, 7.46557636849540600009874362221, 8.234739074769400996356241574784, 8.993023270709452012373367208401, 10.27580958288965262880408110179