Properties

Label 8-1050e4-1.1-c1e4-0-21
Degree $8$
Conductor $1.216\times 10^{12}$
Sign $1$
Analytic cond. $4941.57$
Root an. cond. $2.89556$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s + 2·3-s + 10·4-s + 8·6-s − 6·7-s + 20·8-s + 2·9-s + 20·12-s + 4·13-s − 24·14-s + 35·16-s + 8·18-s − 12·21-s + 16·23-s + 40·24-s + 16·26-s + 6·27-s − 60·28-s + 56·32-s + 20·36-s + 8·39-s − 8·41-s − 48·42-s + 64·46-s + 70·48-s + 18·49-s + 40·52-s + ⋯
L(s)  = 1  + 2.82·2-s + 1.15·3-s + 5·4-s + 3.26·6-s − 2.26·7-s + 7.07·8-s + 2/3·9-s + 5.77·12-s + 1.10·13-s − 6.41·14-s + 35/4·16-s + 1.88·18-s − 2.61·21-s + 3.33·23-s + 8.16·24-s + 3.13·26-s + 1.15·27-s − 11.3·28-s + 9.89·32-s + 10/3·36-s + 1.28·39-s − 1.24·41-s − 7.40·42-s + 9.43·46-s + 10.1·48-s + 18/7·49-s + 5.54·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 5^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 5^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 3^{4} \cdot 5^{8} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(4941.57\)
Root analytic conductor: \(2.89556\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 3^{4} \cdot 5^{8} \cdot 7^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(35.83971544\)
\(L(\frac12)\) \(\approx\) \(35.83971544\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 - T )^{4} \)
3$C_2^2$ \( 1 - 2 T + 2 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
5 \( 1 \)
7$C_2^2$ \( 1 + 6 T + 18 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
good11$C_2^2$ \( ( 1 - 2 T^{2} + p^{2} T^{4} )^{2} \)
13$D_{4}$ \( ( 1 - 2 T + 22 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
17$D_4\times C_2$ \( 1 - 40 T^{2} + 798 T^{4} - 40 p^{2} T^{6} + p^{4} T^{8} \)
19$C_4\times C_2$ \( 1 - 4 T^{2} - 554 T^{4} - 4 p^{2} T^{6} + p^{4} T^{8} \)
23$C_2$ \( ( 1 - 4 T + p T^{2} )^{4} \)
29$D_4\times C_2$ \( 1 - 24 T^{2} + 1646 T^{4} - 24 p^{2} T^{6} + p^{4} T^{8} \)
31$D_4\times C_2$ \( 1 - 64 T^{2} + 2446 T^{4} - 64 p^{2} T^{6} + p^{4} T^{8} \)
37$D_4\times C_2$ \( 1 - 120 T^{2} + 6158 T^{4} - 120 p^{2} T^{6} + p^{4} T^{8} \)
41$D_{4}$ \( ( 1 + 4 T + 66 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
43$D_4\times C_2$ \( 1 + 20 T^{2} - 1322 T^{4} + 20 p^{2} T^{6} + p^{4} T^{8} \)
47$D_4\times C_2$ \( 1 - 140 T^{2} + 8998 T^{4} - 140 p^{2} T^{6} + p^{4} T^{8} \)
53$D_{4}$ \( ( 1 - 8 T + 102 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 + 98 T^{2} + p^{2} T^{4} )^{2} \)
61$D_4\times C_2$ \( 1 - 184 T^{2} + 15406 T^{4} - 184 p^{2} T^{6} + p^{4} T^{8} \)
67$C_2^2$ \( ( 1 + 10 T^{2} + p^{2} T^{4} )^{2} \)
71$D_4\times C_2$ \( 1 - 224 T^{2} + 22126 T^{4} - 224 p^{2} T^{6} + p^{4} T^{8} \)
73$D_{4}$ \( ( 1 + 18 T + 222 T^{2} + 18 p T^{3} + p^{2} T^{4} )^{2} \)
79$C_2^2$ \( ( 1 + 78 T^{2} + p^{2} T^{4} )^{2} \)
83$D_4\times C_2$ \( 1 + 160 T^{2} + 19198 T^{4} + 160 p^{2} T^{6} + p^{4} T^{8} \)
89$D_{4}$ \( ( 1 + 20 T + 258 T^{2} + 20 p T^{3} + p^{2} T^{4} )^{2} \)
97$D_{4}$ \( ( 1 + 6 T + 198 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.95072063394678907984108244673, −6.82865924559308352465896084731, −6.68441058385257951394634051310, −6.41363567199401952692838310842, −6.19742712720476688517660351696, −5.68336357185931872345313926735, −5.68204920035240415023245852844, −5.62441890930335818294982644520, −5.46030595039366272031243137357, −4.81262740963840833702965431464, −4.69365316308581384196775364594, −4.60764282010960848294275498108, −4.20542923027857181654649450472, −4.02328040981591173493777339452, −3.73199676424986754950680523977, −3.36536578159568296727130980861, −3.36435073271541524964057958057, −2.93725583966169976163329291474, −2.92452096857446816300009630787, −2.78253625620746252663217630784, −2.52524051686233231605210669586, −1.82199335561223215722610355937, −1.67404563871674716494633397110, −1.14919653945494743567970880901, −0.69110077047701441249159540905, 0.69110077047701441249159540905, 1.14919653945494743567970880901, 1.67404563871674716494633397110, 1.82199335561223215722610355937, 2.52524051686233231605210669586, 2.78253625620746252663217630784, 2.92452096857446816300009630787, 2.93725583966169976163329291474, 3.36435073271541524964057958057, 3.36536578159568296727130980861, 3.73199676424986754950680523977, 4.02328040981591173493777339452, 4.20542923027857181654649450472, 4.60764282010960848294275498108, 4.69365316308581384196775364594, 4.81262740963840833702965431464, 5.46030595039366272031243137357, 5.62441890930335818294982644520, 5.68204920035240415023245852844, 5.68336357185931872345313926735, 6.19742712720476688517660351696, 6.41363567199401952692838310842, 6.68441058385257951394634051310, 6.82865924559308352465896084731, 6.95072063394678907984108244673

Graph of the $Z$-function along the critical line