L(s) = 1 | + (−2.17 + 1.25i)2-s + (0.866 + 0.5i)3-s + (2.16 − 3.75i)4-s + (2.23 + 0.00136i)5-s − 2.51·6-s + (1.31 − 2.29i)7-s + 5.87i·8-s + (0.499 + 0.866i)9-s + (−4.87 + 2.81i)10-s + (−0.489 + 0.847i)11-s + (3.75 − 2.16i)12-s + 5.14i·13-s + (0.0275 + 6.65i)14-s + (1.93 + 1.11i)15-s + (−3.05 − 5.29i)16-s + (−3.59 − 2.07i)17-s + ⋯ |
L(s) = 1 | + (−1.54 + 0.889i)2-s + (0.499 + 0.288i)3-s + (1.08 − 1.87i)4-s + (0.999 + 0.000610i)5-s − 1.02·6-s + (0.496 − 0.868i)7-s + 2.07i·8-s + (0.166 + 0.288i)9-s + (−1.54 + 0.888i)10-s + (−0.147 + 0.255i)11-s + (1.08 − 0.625i)12-s + 1.42i·13-s + (0.00735 + 1.77i)14-s + (0.499 + 0.288i)15-s + (−0.763 − 1.32i)16-s + (−0.871 − 0.503i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 105 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.550 - 0.834i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 105 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.550 - 0.834i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.617005 + 0.332019i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.617005 + 0.332019i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.866 - 0.5i)T \) |
| 5 | \( 1 + (-2.23 - 0.00136i)T \) |
| 7 | \( 1 + (-1.31 + 2.29i)T \) |
good | 2 | \( 1 + (2.17 - 1.25i)T + (1 - 1.73i)T^{2} \) |
| 11 | \( 1 + (0.489 - 0.847i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 - 5.14iT - 13T^{2} \) |
| 17 | \( 1 + (3.59 + 2.07i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (1.15 + 1.99i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-4.39 + 2.53i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 5.92T + 29T^{2} \) |
| 31 | \( 1 + (0.316 - 0.548i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (7.84 - 4.52i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 - 2.65T + 41T^{2} \) |
| 43 | \( 1 - 0.344iT - 43T^{2} \) |
| 47 | \( 1 + (-3.67 + 2.11i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (6.61 + 3.81i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-0.908 + 1.57i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (0.328 + 0.568i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (8.01 + 4.62i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 5.49T + 71T^{2} \) |
| 73 | \( 1 + (4.65 + 2.68i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (5.44 + 9.42i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 6.62iT - 83T^{2} \) |
| 89 | \( 1 + (-8.15 - 14.1i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 1.53iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.24428641304740243640484422482, −13.34881354931807437614096353835, −11.17411978355311648010853042106, −10.35496967939085209902065990059, −9.316190364556678984332818888882, −8.763253551360327463038417422700, −7.31330323550039300047253527218, −6.58388185222125151334966454148, −4.81565789455395266152381436401, −1.86548052668024560962857103361,
1.76346001999280288833826342344, 2.94360586972849811274325871876, 5.72964197772036066312807092387, 7.46976506605602729595379104281, 8.585108736588720789464984077492, 9.161604476395214285157026194463, 10.33307694386912846478849102363, 11.12195880488742527799887919123, 12.48078149419859808323692645977, 13.17786649948419645935230568597