L(s) = 1 | + 1.73·2-s + (1 + 1.41i)3-s + 0.999·4-s + (−1.73 − 1.41i)5-s + (1.73 + 2.44i)6-s + (−1 − 2.44i)7-s − 1.73·8-s + (−1.00 + 2.82i)9-s + (−2.99 − 2.44i)10-s + 2.82i·11-s + (0.999 + 1.41i)12-s + 4·13-s + (−1.73 − 4.24i)14-s + (0.267 − 3.86i)15-s − 5·16-s − 2.82i·17-s + ⋯ |
L(s) = 1 | + 1.22·2-s + (0.577 + 0.816i)3-s + 0.499·4-s + (−0.774 − 0.632i)5-s + (0.707 + 0.999i)6-s + (−0.377 − 0.925i)7-s − 0.612·8-s + (−0.333 + 0.942i)9-s + (−0.948 − 0.774i)10-s + 0.852i·11-s + (0.288 + 0.408i)12-s + 1.10·13-s + (−0.462 − 1.13i)14-s + (0.0691 − 0.997i)15-s − 1.25·16-s − 0.685i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 105 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.949 - 0.313i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 105 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.949 - 0.313i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.69185 + 0.271605i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.69185 + 0.271605i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-1 - 1.41i)T \) |
| 5 | \( 1 + (1.73 + 1.41i)T \) |
| 7 | \( 1 + (1 + 2.44i)T \) |
good | 2 | \( 1 - 1.73T + 2T^{2} \) |
| 11 | \( 1 - 2.82iT - 11T^{2} \) |
| 13 | \( 1 - 4T + 13T^{2} \) |
| 17 | \( 1 + 2.82iT - 17T^{2} \) |
| 19 | \( 1 - 19T^{2} \) |
| 23 | \( 1 - 3.46T + 23T^{2} \) |
| 29 | \( 1 + 5.65iT - 29T^{2} \) |
| 31 | \( 1 - 9.79iT - 31T^{2} \) |
| 37 | \( 1 - 37T^{2} \) |
| 41 | \( 1 + 3.46T + 41T^{2} \) |
| 43 | \( 1 + 4.89iT - 43T^{2} \) |
| 47 | \( 1 + 2.82iT - 47T^{2} \) |
| 53 | \( 1 + 53T^{2} \) |
| 59 | \( 1 - 6.92T + 59T^{2} \) |
| 61 | \( 1 + 9.79iT - 61T^{2} \) |
| 67 | \( 1 - 4.89iT - 67T^{2} \) |
| 71 | \( 1 - 2.82iT - 71T^{2} \) |
| 73 | \( 1 + 8T + 73T^{2} \) |
| 79 | \( 1 - 8T + 79T^{2} \) |
| 83 | \( 1 + 2.82iT - 83T^{2} \) |
| 89 | \( 1 - 10.3T + 89T^{2} \) |
| 97 | \( 1 + 8T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.72557509293963817535519269605, −13.11647508764656751678784743138, −11.96268792922019792594974489279, −10.81670185047741558198465204750, −9.501650525825397968690254685471, −8.442539820864108846324136547569, −6.99425896532514950415498876883, −5.14419943791786367584315889687, −4.22850298330842497974047409690, −3.35833776691349154454458590662,
2.87845056192373894188141371571, 3.77425723124847594775547346659, 5.82147678121895778841274969685, 6.61545921427657028036280746754, 8.188854155736163205269556742399, 9.059678842927342555093971210870, 11.11844524753782811890678657124, 11.94039509481470754801583399537, 12.91383202839479147883208731616, 13.57243873297159201483064218059