Properties

Label 2-105-1.1-c9-0-8
Degree $2$
Conductor $105$
Sign $1$
Analytic cond. $54.0787$
Root an. cond. $7.35382$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 14.5·2-s + 81·3-s − 300.·4-s − 625·5-s + 1.17e3·6-s − 2.40e3·7-s − 1.18e4·8-s + 6.56e3·9-s − 9.09e3·10-s − 4.12e4·11-s − 2.43e4·12-s + 7.59e4·13-s − 3.49e4·14-s − 5.06e4·15-s − 1.80e4·16-s + 3.23e5·17-s + 9.54e4·18-s − 3.37e5·19-s + 1.87e5·20-s − 1.94e5·21-s − 5.99e5·22-s + 1.37e6·23-s − 9.57e5·24-s + 3.90e5·25-s + 1.10e6·26-s + 5.31e5·27-s + 7.21e5·28-s + ⋯
L(s)  = 1  + 0.642·2-s + 0.577·3-s − 0.586·4-s − 0.447·5-s + 0.371·6-s − 0.377·7-s − 1.01·8-s + 0.333·9-s − 0.287·10-s − 0.849·11-s − 0.338·12-s + 0.737·13-s − 0.242·14-s − 0.258·15-s − 0.0687·16-s + 0.938·17-s + 0.214·18-s − 0.594·19-s + 0.262·20-s − 0.218·21-s − 0.545·22-s + 1.02·23-s − 0.588·24-s + 0.200·25-s + 0.474·26-s + 0.192·27-s + 0.221·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 105 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 105 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(105\)    =    \(3 \cdot 5 \cdot 7\)
Sign: $1$
Analytic conductor: \(54.0787\)
Root analytic conductor: \(7.35382\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 105,\ (\ :9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(2.343883970\)
\(L(\frac12)\) \(\approx\) \(2.343883970\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 81T \)
5 \( 1 + 625T \)
7 \( 1 + 2.40e3T \)
good2 \( 1 - 14.5T + 512T^{2} \)
11 \( 1 + 4.12e4T + 2.35e9T^{2} \)
13 \( 1 - 7.59e4T + 1.06e10T^{2} \)
17 \( 1 - 3.23e5T + 1.18e11T^{2} \)
19 \( 1 + 3.37e5T + 3.22e11T^{2} \)
23 \( 1 - 1.37e6T + 1.80e12T^{2} \)
29 \( 1 - 9.27e5T + 1.45e13T^{2} \)
31 \( 1 - 1.36e6T + 2.64e13T^{2} \)
37 \( 1 - 1.19e7T + 1.29e14T^{2} \)
41 \( 1 - 1.42e7T + 3.27e14T^{2} \)
43 \( 1 - 1.00e7T + 5.02e14T^{2} \)
47 \( 1 + 1.01e7T + 1.11e15T^{2} \)
53 \( 1 + 1.33e7T + 3.29e15T^{2} \)
59 \( 1 - 4.27e6T + 8.66e15T^{2} \)
61 \( 1 + 1.03e8T + 1.16e16T^{2} \)
67 \( 1 - 2.65e7T + 2.72e16T^{2} \)
71 \( 1 - 2.27e7T + 4.58e16T^{2} \)
73 \( 1 - 3.13e8T + 5.88e16T^{2} \)
79 \( 1 - 3.72e8T + 1.19e17T^{2} \)
83 \( 1 - 6.23e8T + 1.86e17T^{2} \)
89 \( 1 + 8.50e8T + 3.50e17T^{2} \)
97 \( 1 + 7.33e8T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.40089517141406650666935966643, −10.95466149215134014122233297591, −9.711944946672934244152086787062, −8.671822273084131580235478676869, −7.71925233356516421632786096976, −6.16649207487421274419501113599, −4.88899681022675589491323719984, −3.73237178779847493527608566038, −2.79448417812480357008461684529, −0.75026291510493518582867650787, 0.75026291510493518582867650787, 2.79448417812480357008461684529, 3.73237178779847493527608566038, 4.88899681022675589491323719984, 6.16649207487421274419501113599, 7.71925233356516421632786096976, 8.671822273084131580235478676869, 9.711944946672934244152086787062, 10.95466149215134014122233297591, 12.40089517141406650666935966643

Graph of the $Z$-function along the critical line