Properties

Label 2-1045-1.1-c5-0-200
Degree $2$
Conductor $1045$
Sign $-1$
Analytic cond. $167.601$
Root an. cond. $12.9460$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.814·2-s − 1.30·3-s − 31.3·4-s − 25·5-s − 1.06·6-s + 233.·7-s − 51.6·8-s − 241.·9-s − 20.3·10-s − 121·11-s + 40.9·12-s − 526.·13-s + 190.·14-s + 32.6·15-s + 960.·16-s + 824.·17-s − 196.·18-s − 361·19-s + 783.·20-s − 305.·21-s − 98.6·22-s + 1.29e3·23-s + 67.4·24-s + 625·25-s − 429.·26-s + 633.·27-s − 7.32e3·28-s + ⋯
L(s)  = 1  + 0.144·2-s − 0.0838·3-s − 0.979·4-s − 0.447·5-s − 0.0120·6-s + 1.80·7-s − 0.285·8-s − 0.992·9-s − 0.0644·10-s − 0.301·11-s + 0.0821·12-s − 0.864·13-s + 0.259·14-s + 0.0375·15-s + 0.938·16-s + 0.691·17-s − 0.143·18-s − 0.229·19-s + 0.437·20-s − 0.151·21-s − 0.0434·22-s + 0.510·23-s + 0.0239·24-s + 0.200·25-s − 0.124·26-s + 0.167·27-s − 1.76·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1045\)    =    \(5 \cdot 11 \cdot 19\)
Sign: $-1$
Analytic conductor: \(167.601\)
Root analytic conductor: \(12.9460\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1045,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + 25T \)
11 \( 1 + 121T \)
19 \( 1 + 361T \)
good2 \( 1 - 0.814T + 32T^{2} \)
3 \( 1 + 1.30T + 243T^{2} \)
7 \( 1 - 233.T + 1.68e4T^{2} \)
13 \( 1 + 526.T + 3.71e5T^{2} \)
17 \( 1 - 824.T + 1.41e6T^{2} \)
23 \( 1 - 1.29e3T + 6.43e6T^{2} \)
29 \( 1 + 3.06e3T + 2.05e7T^{2} \)
31 \( 1 + 3.01e3T + 2.86e7T^{2} \)
37 \( 1 - 9.31e3T + 6.93e7T^{2} \)
41 \( 1 + 9.03e3T + 1.15e8T^{2} \)
43 \( 1 - 1.82e4T + 1.47e8T^{2} \)
47 \( 1 + 7.48e3T + 2.29e8T^{2} \)
53 \( 1 + 1.13e4T + 4.18e8T^{2} \)
59 \( 1 - 3.39e4T + 7.14e8T^{2} \)
61 \( 1 + 2.63e4T + 8.44e8T^{2} \)
67 \( 1 + 6.44e4T + 1.35e9T^{2} \)
71 \( 1 + 3.46e4T + 1.80e9T^{2} \)
73 \( 1 - 6.19e4T + 2.07e9T^{2} \)
79 \( 1 - 1.02e5T + 3.07e9T^{2} \)
83 \( 1 - 1.03e5T + 3.93e9T^{2} \)
89 \( 1 + 8.84e4T + 5.58e9T^{2} \)
97 \( 1 + 3.62e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.690199079101188209570390126457, −7.929883936803371680435939228635, −7.51942850271600496049421745809, −5.88048053368380564052057298886, −5.10253470065536989794554003145, −4.64518951905157019327130436084, −3.55872578992289377596943456046, −2.36574768123830089759131346189, −1.05507687857460935404821716020, 0, 1.05507687857460935404821716020, 2.36574768123830089759131346189, 3.55872578992289377596943456046, 4.64518951905157019327130436084, 5.10253470065536989794554003145, 5.88048053368380564052057298886, 7.51942850271600496049421745809, 7.929883936803371680435939228635, 8.690199079101188209570390126457

Graph of the $Z$-function along the critical line