L(s) = 1 | + 3.08·3-s − 5i·5-s + 17.4i·7-s − 17.4·9-s − 3.40i·11-s + (−36.8 − 28.9i)13-s − 15.4i·15-s + 102.·17-s + 4.59i·19-s + 53.7i·21-s − 32.4·23-s − 25·25-s − 137.·27-s + 241.·29-s − 124. i·31-s + ⋯ |
L(s) = 1 | + 0.593·3-s − 0.447i·5-s + 0.941i·7-s − 0.647·9-s − 0.0933i·11-s + (−0.786 − 0.617i)13-s − 0.265i·15-s + 1.45·17-s + 0.0555i·19-s + 0.558i·21-s − 0.293·23-s − 0.200·25-s − 0.977·27-s + 1.54·29-s − 0.723i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.617 - 0.786i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1040 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.617 - 0.786i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(2.113395482\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.113395482\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + 5iT \) |
| 13 | \( 1 + (36.8 + 28.9i)T \) |
good | 3 | \( 1 - 3.08T + 27T^{2} \) |
| 7 | \( 1 - 17.4iT - 343T^{2} \) |
| 11 | \( 1 + 3.40iT - 1.33e3T^{2} \) |
| 17 | \( 1 - 102.T + 4.91e3T^{2} \) |
| 19 | \( 1 - 4.59iT - 6.85e3T^{2} \) |
| 23 | \( 1 + 32.4T + 1.21e4T^{2} \) |
| 29 | \( 1 - 241.T + 2.43e4T^{2} \) |
| 31 | \( 1 + 124. iT - 2.97e4T^{2} \) |
| 37 | \( 1 - 184. iT - 5.06e4T^{2} \) |
| 41 | \( 1 - 377. iT - 6.89e4T^{2} \) |
| 43 | \( 1 - 297.T + 7.95e4T^{2} \) |
| 47 | \( 1 - 292. iT - 1.03e5T^{2} \) |
| 53 | \( 1 - 371.T + 1.48e5T^{2} \) |
| 59 | \( 1 - 358. iT - 2.05e5T^{2} \) |
| 61 | \( 1 + 323.T + 2.26e5T^{2} \) |
| 67 | \( 1 - 795. iT - 3.00e5T^{2} \) |
| 71 | \( 1 - 909. iT - 3.57e5T^{2} \) |
| 73 | \( 1 - 526. iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 688.T + 4.93e5T^{2} \) |
| 83 | \( 1 + 1.14e3iT - 5.71e5T^{2} \) |
| 89 | \( 1 - 1.20e3iT - 7.04e5T^{2} \) |
| 97 | \( 1 + 695. iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.648535090279056662100312068633, −8.683558459549579544997860193640, −8.193457527563985431785854516661, −7.42779849555500562349499060423, −5.98243204453770700979511343170, −5.51187818027141522143875757188, −4.42981028495313225843207101890, −3.05847468034527081609981226040, −2.52821645832580888196274449717, −1.00948478214256148341077242797,
0.55547037034181353325476315089, 2.05671709010264730300372370407, 3.10728580430300015276790067407, 3.90858766834721537058519248193, 5.03153626420312112211192031956, 6.08750951488571219170195979562, 7.15760553137750715411200566943, 7.64005544024802345056025317248, 8.584391150210314312158368177590, 9.448321959819539193356215201793