L(s) = 1 | − 5.13·3-s − 5i·5-s + 9.97i·7-s − 0.594·9-s + 6.66i·11-s + (5.10 + 46.5i)13-s + 25.6i·15-s − 1.15·17-s − 48.3i·19-s − 51.2i·21-s + 125.·23-s − 25·25-s + 141.·27-s − 139.·29-s + 195. i·31-s + ⋯ |
L(s) = 1 | − 0.988·3-s − 0.447i·5-s + 0.538i·7-s − 0.0220·9-s + 0.182i·11-s + (0.108 + 0.994i)13-s + 0.442i·15-s − 0.0164·17-s − 0.583i·19-s − 0.532i·21-s + 1.13·23-s − 0.200·25-s + 1.01·27-s − 0.890·29-s + 1.13i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.994 + 0.108i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1040 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.994 + 0.108i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.09021361210\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.09021361210\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + 5iT \) |
| 13 | \( 1 + (-5.10 - 46.5i)T \) |
good | 3 | \( 1 + 5.13T + 27T^{2} \) |
| 7 | \( 1 - 9.97iT - 343T^{2} \) |
| 11 | \( 1 - 6.66iT - 1.33e3T^{2} \) |
| 17 | \( 1 + 1.15T + 4.91e3T^{2} \) |
| 19 | \( 1 + 48.3iT - 6.85e3T^{2} \) |
| 23 | \( 1 - 125.T + 1.21e4T^{2} \) |
| 29 | \( 1 + 139.T + 2.43e4T^{2} \) |
| 31 | \( 1 - 195. iT - 2.97e4T^{2} \) |
| 37 | \( 1 - 174. iT - 5.06e4T^{2} \) |
| 41 | \( 1 + 452. iT - 6.89e4T^{2} \) |
| 43 | \( 1 + 54.5T + 7.95e4T^{2} \) |
| 47 | \( 1 + 369. iT - 1.03e5T^{2} \) |
| 53 | \( 1 - 4.19T + 1.48e5T^{2} \) |
| 59 | \( 1 - 169. iT - 2.05e5T^{2} \) |
| 61 | \( 1 - 271.T + 2.26e5T^{2} \) |
| 67 | \( 1 - 54.6iT - 3.00e5T^{2} \) |
| 71 | \( 1 - 883. iT - 3.57e5T^{2} \) |
| 73 | \( 1 - 613. iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 425.T + 4.93e5T^{2} \) |
| 83 | \( 1 + 680. iT - 5.71e5T^{2} \) |
| 89 | \( 1 - 943. iT - 7.04e5T^{2} \) |
| 97 | \( 1 + 1.81e3iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.03794663937886763845696871023, −8.932859262983849423366748389547, −8.671720774689602817344996007144, −7.18694332294426882560758149059, −6.60688903000381187530312981862, −5.49273365433453969567867563357, −5.07858107652752673382288449636, −3.96708897698901715877327539930, −2.57267102740242491521633203316, −1.27668295972434811186816726460,
0.03052849053066024677894357322, 1.09785856010436159036333084810, 2.73538134897465057982263769395, 3.74855910923941880614780616842, 4.91676263575623716804555379181, 5.76807496433113703537107471222, 6.39213956545287786202535579879, 7.41055526336071297495219401113, 8.094376261377264329116438801861, 9.266059179202406987444637160610