L(s) = 1 | + 7.17·3-s − 5i·5-s + 5.20i·7-s + 24.4·9-s + 46.2i·11-s + (−44.2 + 15.5i)13-s − 35.8i·15-s − 14.9·17-s + 75.6i·19-s + 37.3i·21-s + 134.·23-s − 25·25-s − 18.2·27-s − 236.·29-s − 65.0i·31-s + ⋯ |
L(s) = 1 | + 1.38·3-s − 0.447i·5-s + 0.281i·7-s + 0.905·9-s + 1.26i·11-s + (−0.943 + 0.330i)13-s − 0.617i·15-s − 0.212·17-s + 0.914i·19-s + 0.388i·21-s + 1.22·23-s − 0.200·25-s − 0.130·27-s − 1.51·29-s − 0.377i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.330 - 0.943i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1040 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.330 - 0.943i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(2.167483132\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.167483132\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + 5iT \) |
| 13 | \( 1 + (44.2 - 15.5i)T \) |
good | 3 | \( 1 - 7.17T + 27T^{2} \) |
| 7 | \( 1 - 5.20iT - 343T^{2} \) |
| 11 | \( 1 - 46.2iT - 1.33e3T^{2} \) |
| 17 | \( 1 + 14.9T + 4.91e3T^{2} \) |
| 19 | \( 1 - 75.6iT - 6.85e3T^{2} \) |
| 23 | \( 1 - 134.T + 1.21e4T^{2} \) |
| 29 | \( 1 + 236.T + 2.43e4T^{2} \) |
| 31 | \( 1 + 65.0iT - 2.97e4T^{2} \) |
| 37 | \( 1 - 311. iT - 5.06e4T^{2} \) |
| 41 | \( 1 - 86.3iT - 6.89e4T^{2} \) |
| 43 | \( 1 + 299.T + 7.95e4T^{2} \) |
| 47 | \( 1 + 108. iT - 1.03e5T^{2} \) |
| 53 | \( 1 + 700.T + 1.48e5T^{2} \) |
| 59 | \( 1 - 287. iT - 2.05e5T^{2} \) |
| 61 | \( 1 - 59.0T + 2.26e5T^{2} \) |
| 67 | \( 1 - 304. iT - 3.00e5T^{2} \) |
| 71 | \( 1 + 274. iT - 3.57e5T^{2} \) |
| 73 | \( 1 + 835. iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 382.T + 4.93e5T^{2} \) |
| 83 | \( 1 - 1.49e3iT - 5.71e5T^{2} \) |
| 89 | \( 1 - 1.49e3iT - 7.04e5T^{2} \) |
| 97 | \( 1 - 1.50e3iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.470538279652245374622595703305, −9.148761510109976103960552734598, −8.109533715898269603013185274145, −7.55255948071751414948683106316, −6.67292594697428125069322786663, −5.27416613512727568660535276321, −4.46597566564157970012658240749, −3.44134438559212823191778816234, −2.37087902325520208484151157882, −1.61644217281294846266792301925,
0.39465858951455778273665959220, 2.02835502811516819222745925984, 3.01604790978399985046725205598, 3.52830220530309704727577416500, 4.80970312130971383307294722311, 5.91039673475899547199730485488, 7.14810109875135845069076102772, 7.57040324850839352304017701257, 8.631172452623738283602466500644, 9.093157823519825174125943886401