L(s) = 1 | + 5-s + (−1.5 − 2.59i)7-s + (1.5 + 2.59i)9-s + (−1.5 + 2.59i)11-s + (−3.5 + 0.866i)13-s + (2 + 3.46i)17-s + (3.5 + 6.06i)19-s + (−2 + 3.46i)23-s + 25-s + (4 − 6.92i)29-s + 10·31-s + (−1.5 − 2.59i)35-s + (−1.5 + 2.59i)37-s + (1 − 1.73i)41-s + (3 + 5.19i)43-s + ⋯ |
L(s) = 1 | + 0.447·5-s + (−0.566 − 0.981i)7-s + (0.5 + 0.866i)9-s + (−0.452 + 0.783i)11-s + (−0.970 + 0.240i)13-s + (0.485 + 0.840i)17-s + (0.802 + 1.39i)19-s + (−0.417 + 0.722i)23-s + 0.200·25-s + (0.742 − 1.28i)29-s + 1.79·31-s + (−0.253 − 0.439i)35-s + (−0.246 + 0.427i)37-s + (0.156 − 0.270i)41-s + (0.457 + 0.792i)43-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.522 - 0.852i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1040 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.522 - 0.852i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.477618143\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.477618143\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 - T \) |
| 13 | \( 1 + (3.5 - 0.866i)T \) |
good | 3 | \( 1 + (-1.5 - 2.59i)T^{2} \) |
| 7 | \( 1 + (1.5 + 2.59i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (1.5 - 2.59i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (-2 - 3.46i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-3.5 - 6.06i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (2 - 3.46i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-4 + 6.92i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 10T + 31T^{2} \) |
| 37 | \( 1 + (1.5 - 2.59i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-1 + 1.73i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-3 - 5.19i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - T + 47T^{2} \) |
| 53 | \( 1 + 9T + 53T^{2} \) |
| 59 | \( 1 + (2 + 3.46i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-7 - 12.1i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-2 + 3.46i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-3 - 5.19i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 4T + 73T^{2} \) |
| 79 | \( 1 + 10T + 79T^{2} \) |
| 83 | \( 1 + 83T^{2} \) |
| 89 | \( 1 + (0.5 - 0.866i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (8 + 13.8i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.900096912838660520424409182755, −9.828803287047650627160180626082, −8.067446308438749830899649893147, −7.67134612970128390849417748114, −6.77431777862100081282101146224, −5.79759526651364542510291869715, −4.76110135074437241919592529354, −3.96381096315618940633706225952, −2.62234119848420678874917353043, −1.43219173246558327857857503143,
0.70755527216395934544313643734, 2.61954838010685489440722603534, 3.11832468131058604268564139473, 4.74128519240617665761652416027, 5.47325668756707026351300984270, 6.43425235774601177400295620642, 7.10228348192114430904729985552, 8.264873616973091332588064471588, 9.174127321069994995867871803631, 9.633045943457412736749359149404