| L(s) = 1 | − 2.56·3-s − 2.56i·5-s − 4.56i·7-s + 3.56·9-s + 3.12i·11-s + (−3.56 − 0.561i)13-s + 6.56i·15-s + 0.561·17-s − 2i·19-s + 11.6i·21-s + 5.12·23-s − 1.56·25-s − 1.43·27-s + 3.12·29-s − 3.12i·31-s + ⋯ |
| L(s) = 1 | − 1.47·3-s − 1.14i·5-s − 1.72i·7-s + 1.18·9-s + 0.941i·11-s + (−0.987 − 0.155i)13-s + 1.69i·15-s + 0.136·17-s − 0.458i·19-s + 2.54i·21-s + 1.06·23-s − 0.312·25-s − 0.276·27-s + 0.579·29-s − 0.560i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 104 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.155 + 0.987i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 104 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.155 + 0.987i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.375143 - 0.438926i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.375143 - 0.438926i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 13 | \( 1 + (3.56 + 0.561i)T \) |
| good | 3 | \( 1 + 2.56T + 3T^{2} \) |
| 5 | \( 1 + 2.56iT - 5T^{2} \) |
| 7 | \( 1 + 4.56iT - 7T^{2} \) |
| 11 | \( 1 - 3.12iT - 11T^{2} \) |
| 17 | \( 1 - 0.561T + 17T^{2} \) |
| 19 | \( 1 + 2iT - 19T^{2} \) |
| 23 | \( 1 - 5.12T + 23T^{2} \) |
| 29 | \( 1 - 3.12T + 29T^{2} \) |
| 31 | \( 1 + 3.12iT - 31T^{2} \) |
| 37 | \( 1 + 5.43iT - 37T^{2} \) |
| 41 | \( 1 - 8iT - 41T^{2} \) |
| 43 | \( 1 - 5.43T + 43T^{2} \) |
| 47 | \( 1 - 3.43iT - 47T^{2} \) |
| 53 | \( 1 + 4.24T + 53T^{2} \) |
| 59 | \( 1 + 10iT - 59T^{2} \) |
| 61 | \( 1 - 11.1T + 61T^{2} \) |
| 67 | \( 1 - 0.876iT - 67T^{2} \) |
| 71 | \( 1 - 5.68iT - 71T^{2} \) |
| 73 | \( 1 + 15.3iT - 73T^{2} \) |
| 79 | \( 1 + 2.87T + 79T^{2} \) |
| 83 | \( 1 - 8.24iT - 83T^{2} \) |
| 89 | \( 1 + 5.12iT - 89T^{2} \) |
| 97 | \( 1 - 10.2iT - 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.05788105325865886984199441831, −12.55064043438921653300935219018, −11.39803804061105034109458613702, −10.44408913303524753807604362885, −9.502943919287802888050606754840, −7.65090547894969370312473309833, −6.71524237113646937116762012197, −5.05576853582456256570451100711, −4.45745836243593014118859789520, −0.822306837426084776611752528850,
2.81940109496769999616361812104, 5.17542745090515959892732581799, 6.00595867533401268694237966537, 6.98664653332785130469973438510, 8.717655708598016115979700991346, 10.13985013584147892272852406779, 11.12304775058398219087056879111, 11.84270170950207514109985740900, 12.59468315299087929444429183686, 14.26437492633309436610098698076