Properties

Label 2-103-1.1-c11-0-11
Degree $2$
Conductor $103$
Sign $1$
Analytic cond. $79.1393$
Root an. cond. $8.89602$
Motivic weight $11$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 22.5·2-s − 238.·3-s − 1.54e3·4-s + 6.83e3·5-s − 5.37e3·6-s − 6.22e4·7-s − 8.07e4·8-s − 1.20e5·9-s + 1.53e5·10-s − 1.40e5·11-s + 3.67e5·12-s − 1.40e6·13-s − 1.40e6·14-s − 1.63e6·15-s + 1.33e6·16-s − 7.22e5·17-s − 2.70e6·18-s − 5.33e6·19-s − 1.05e7·20-s + 1.48e7·21-s − 3.16e6·22-s − 1.14e7·23-s + 1.92e7·24-s − 2.05e6·25-s − 3.17e7·26-s + 7.09e7·27-s + 9.59e7·28-s + ⋯
L(s)  = 1  + 0.497·2-s − 0.567·3-s − 0.752·4-s + 0.978·5-s − 0.282·6-s − 1.39·7-s − 0.871·8-s − 0.678·9-s + 0.486·10-s − 0.263·11-s + 0.426·12-s − 1.05·13-s − 0.695·14-s − 0.555·15-s + 0.319·16-s − 0.123·17-s − 0.337·18-s − 0.493·19-s − 0.736·20-s + 0.793·21-s − 0.131·22-s − 0.372·23-s + 0.494·24-s − 0.0420·25-s − 0.523·26-s + 0.951·27-s + 1.05·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 103 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(12-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 103 ^{s/2} \, \Gamma_{\C}(s+11/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(103\)
Sign: $1$
Analytic conductor: \(79.1393\)
Root analytic conductor: \(8.89602\)
Motivic weight: \(11\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 103,\ (\ :11/2),\ 1)\)

Particular Values

\(L(6)\) \(\approx\) \(0.4883637281\)
\(L(\frac12)\) \(\approx\) \(0.4883637281\)
\(L(\frac{13}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad103 \( 1 + 1.15e10T \)
good2 \( 1 - 22.5T + 2.04e3T^{2} \)
3 \( 1 + 238.T + 1.77e5T^{2} \)
5 \( 1 - 6.83e3T + 4.88e7T^{2} \)
7 \( 1 + 6.22e4T + 1.97e9T^{2} \)
11 \( 1 + 1.40e5T + 2.85e11T^{2} \)
13 \( 1 + 1.40e6T + 1.79e12T^{2} \)
17 \( 1 + 7.22e5T + 3.42e13T^{2} \)
19 \( 1 + 5.33e6T + 1.16e14T^{2} \)
23 \( 1 + 1.14e7T + 9.52e14T^{2} \)
29 \( 1 + 1.30e7T + 1.22e16T^{2} \)
31 \( 1 + 5.67e7T + 2.54e16T^{2} \)
37 \( 1 + 6.41e8T + 1.77e17T^{2} \)
41 \( 1 + 4.61e8T + 5.50e17T^{2} \)
43 \( 1 + 1.46e9T + 9.29e17T^{2} \)
47 \( 1 - 2.19e9T + 2.47e18T^{2} \)
53 \( 1 - 2.62e9T + 9.26e18T^{2} \)
59 \( 1 + 2.58e9T + 3.01e19T^{2} \)
61 \( 1 - 7.20e9T + 4.35e19T^{2} \)
67 \( 1 - 1.00e10T + 1.22e20T^{2} \)
71 \( 1 - 1.98e10T + 2.31e20T^{2} \)
73 \( 1 - 9.21e9T + 3.13e20T^{2} \)
79 \( 1 + 4.11e10T + 7.47e20T^{2} \)
83 \( 1 + 2.29e10T + 1.28e21T^{2} \)
89 \( 1 - 8.25e10T + 2.77e21T^{2} \)
97 \( 1 + 1.31e10T + 7.15e21T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.96664140039845845079574735446, −10.31681534397552446982422265010, −9.651940177622077381518236015706, −8.643758469003914197204601502873, −6.76030928121165178084191950085, −5.81485014848979691854527724468, −5.09141985553782854291518118949, −3.54617628269503133181194071955, −2.37019813387952516793329013001, −0.31770133880905805292140603485, 0.31770133880905805292140603485, 2.37019813387952516793329013001, 3.54617628269503133181194071955, 5.09141985553782854291518118949, 5.81485014848979691854527724468, 6.76030928121165178084191950085, 8.643758469003914197204601502873, 9.651940177622077381518236015706, 10.31681534397552446982422265010, 11.96664140039845845079574735446

Graph of the $Z$-function along the critical line