L(s) = 1 | + 2-s + 4-s − 2·5-s + 2·8-s − 9-s − 2·10-s + 11-s + 2·13-s + 2·16-s − 18-s + 19-s − 2·20-s + 22-s + 23-s + 25-s + 2·26-s − 2·31-s + 2·32-s − 36-s + 38-s − 4·40-s + 44-s + 2·45-s + 46-s − 49-s + 50-s + 2·52-s + ⋯ |
L(s) = 1 | + 2-s + 4-s − 2·5-s + 2·8-s − 9-s − 2·10-s + 11-s + 2·13-s + 2·16-s − 18-s + 19-s − 2·20-s + 22-s + 23-s + 25-s + 2·26-s − 2·31-s + 2·32-s − 36-s + 38-s − 4·40-s + 44-s + 2·45-s + 46-s − 49-s + 50-s + 2·52-s + ⋯ |
Λ(s)=(=(1054729s/2ΓC(s)2L(s)Λ(1−s)
Λ(s)=(=(1054729s/2ΓC(s)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
1054729
= 132⋅792
|
Sign: |
1
|
Analytic conductor: |
0.262697 |
Root analytic conductor: |
0.715918 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 1054729, ( :0,0), 1)
|
Particular Values
L(21) |
≈ |
1.623183818 |
L(21) |
≈ |
1.623183818 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 13 | C1 | (1−T)2 |
| 79 | C1 | (1−T)2 |
good | 2 | C1×C2 | (1−T)2(1+T+T2) |
| 3 | C2 | (1−T+T2)(1+T+T2) |
| 5 | C2 | (1+T+T2)2 |
| 7 | C2 | (1−T+T2)(1+T+T2) |
| 11 | C1×C2 | (1−T)2(1+T+T2) |
| 17 | C2 | (1−T+T2)(1+T+T2) |
| 19 | C1×C2 | (1−T)2(1+T+T2) |
| 23 | C1×C2 | (1−T)2(1+T+T2) |
| 29 | C2 | (1−T+T2)(1+T+T2) |
| 31 | C2 | (1+T+T2)2 |
| 37 | C2 | (1−T+T2)(1+T+T2) |
| 41 | C2 | (1−T+T2)(1+T+T2) |
| 43 | C2 | (1−T+T2)(1+T+T2) |
| 47 | C1×C1 | (1−T)2(1+T)2 |
| 53 | C1×C1 | (1−T)2(1+T)2 |
| 59 | C2 | (1−T+T2)(1+T+T2) |
| 61 | C2 | (1−T+T2)(1+T+T2) |
| 67 | C2 | (1+T+T2)2 |
| 71 | C2 | (1−T+T2)(1+T+T2) |
| 73 | C2 | (1+T+T2)2 |
| 83 | C2 | (1+T+T2)2 |
| 89 | C2 | (1+T+T2)2 |
| 97 | C1×C2 | (1−T)2(1+T+T2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.46615755009783933935676078390, −10.27110015600269272082278324988, −9.335569883374458015250617223554, −9.063305693524270150017827572523, −8.391963279391228760465524712718, −8.380450659643299525304038593209, −7.56844212499678880318083819740, −7.53059444797042939960776823323, −7.10612424694351373910820587978, −6.52686038307702376327906944098, −6.03885496050121979241949048776, −5.59579701489961261337259153152, −5.15060879542347511279056135005, −4.39647740261656078063708037035, −4.18211833303512092634227166706, −3.64694614704696204880925619742, −3.38756120392712418852395697780, −2.94938555094551187344708115777, −1.72711042807289924545237413814, −1.22494467818441012398716771442,
1.22494467818441012398716771442, 1.72711042807289924545237413814, 2.94938555094551187344708115777, 3.38756120392712418852395697780, 3.64694614704696204880925619742, 4.18211833303512092634227166706, 4.39647740261656078063708037035, 5.15060879542347511279056135005, 5.59579701489961261337259153152, 6.03885496050121979241949048776, 6.52686038307702376327906944098, 7.10612424694351373910820587978, 7.53059444797042939960776823323, 7.56844212499678880318083819740, 8.380450659643299525304038593209, 8.391963279391228760465524712718, 9.063305693524270150017827572523, 9.335569883374458015250617223554, 10.27110015600269272082278324988, 10.46615755009783933935676078390