Properties

Label 2-2e10-8.5-c3-0-89
Degree $2$
Conductor $1024$
Sign $-i$
Analytic cond. $60.4179$
Root an. cond. $7.77289$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8.43i·3-s − 12.2i·5-s + 1.63·7-s − 44.1·9-s − 25.7i·11-s − 13.2i·13-s − 103.·15-s − 53.6·17-s − 100. i·19-s − 13.8i·21-s + 25.1·23-s − 25.6·25-s + 144. i·27-s + 256. i·29-s − 132.·31-s + ⋯
L(s)  = 1  − 1.62i·3-s − 1.09i·5-s + 0.0885·7-s − 1.63·9-s − 0.705i·11-s − 0.282i·13-s − 1.78·15-s − 0.764·17-s − 1.21i·19-s − 0.143i·21-s + 0.227·23-s − 0.205·25-s + 1.03i·27-s + 1.63i·29-s − 0.768·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1024 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1024 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1024\)    =    \(2^{10}\)
Sign: $-i$
Analytic conductor: \(60.4179\)
Root analytic conductor: \(7.77289\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{1024} (513, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1024,\ (\ :3/2),\ -i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.9820418801\)
\(L(\frac12)\) \(\approx\) \(0.9820418801\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
good3 \( 1 + 8.43iT - 27T^{2} \)
5 \( 1 + 12.2iT - 125T^{2} \)
7 \( 1 - 1.63T + 343T^{2} \)
11 \( 1 + 25.7iT - 1.33e3T^{2} \)
13 \( 1 + 13.2iT - 2.19e3T^{2} \)
17 \( 1 + 53.6T + 4.91e3T^{2} \)
19 \( 1 + 100. iT - 6.85e3T^{2} \)
23 \( 1 - 25.1T + 1.21e4T^{2} \)
29 \( 1 - 256. iT - 2.43e4T^{2} \)
31 \( 1 + 132.T + 2.97e4T^{2} \)
37 \( 1 + 247. iT - 5.06e4T^{2} \)
41 \( 1 + 198.T + 6.89e4T^{2} \)
43 \( 1 - 404. iT - 7.95e4T^{2} \)
47 \( 1 - 78.3T + 1.03e5T^{2} \)
53 \( 1 + 743. iT - 1.48e5T^{2} \)
59 \( 1 - 65.8iT - 2.05e5T^{2} \)
61 \( 1 + 273. iT - 2.26e5T^{2} \)
67 \( 1 - 399. iT - 3.00e5T^{2} \)
71 \( 1 - 727.T + 3.57e5T^{2} \)
73 \( 1 + 106.T + 3.89e5T^{2} \)
79 \( 1 + 58.9T + 4.93e5T^{2} \)
83 \( 1 - 580. iT - 5.71e5T^{2} \)
89 \( 1 - 768.T + 7.04e5T^{2} \)
97 \( 1 + 809.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.663228781006056652254386103536, −8.223471889216432682870093279136, −7.17041553953905429607569233391, −6.59541682055860781212958030415, −5.52866143345933738196774448047, −4.79018600126252228072690965714, −3.25462457227019725472584664293, −2.06514178200040955152436996738, −1.08025876769131984641955543924, −0.26046297225256613810190775547, 2.09122357968923892892912870698, 3.20860906231784754342236606399, 4.02725219108821243861276607154, 4.77446400849893411652263992930, 5.84021519814068539550462734304, 6.72992334621177163150659736711, 7.73097347873206393847731724933, 8.771588520614183767213130094315, 9.602809701004325945461090355699, 10.20499236509207338701005102492

Graph of the $Z$-function along the critical line