Properties

Label 2-2e10-8.5-c3-0-63
Degree $2$
Conductor $1024$
Sign $i$
Analytic cond. $60.4179$
Root an. cond. $7.77289$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8.43i·3-s − 12.2i·5-s − 1.63·7-s − 44.1·9-s + 25.7i·11-s − 13.2i·13-s + 103.·15-s − 53.6·17-s + 100. i·19-s − 13.8i·21-s − 25.1·23-s − 25.6·25-s − 144. i·27-s + 256. i·29-s + 132.·31-s + ⋯
L(s)  = 1  + 1.62i·3-s − 1.09i·5-s − 0.0885·7-s − 1.63·9-s + 0.705i·11-s − 0.282i·13-s + 1.78·15-s − 0.764·17-s + 1.21i·19-s − 0.143i·21-s − 0.227·23-s − 0.205·25-s − 1.03i·27-s + 1.63i·29-s + 0.768·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1024 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1024 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1024\)    =    \(2^{10}\)
Sign: $i$
Analytic conductor: \(60.4179\)
Root analytic conductor: \(7.77289\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{1024} (513, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1024,\ (\ :3/2),\ i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.3126089096\)
\(L(\frac12)\) \(\approx\) \(0.3126089096\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
good3 \( 1 - 8.43iT - 27T^{2} \)
5 \( 1 + 12.2iT - 125T^{2} \)
7 \( 1 + 1.63T + 343T^{2} \)
11 \( 1 - 25.7iT - 1.33e3T^{2} \)
13 \( 1 + 13.2iT - 2.19e3T^{2} \)
17 \( 1 + 53.6T + 4.91e3T^{2} \)
19 \( 1 - 100. iT - 6.85e3T^{2} \)
23 \( 1 + 25.1T + 1.21e4T^{2} \)
29 \( 1 - 256. iT - 2.43e4T^{2} \)
31 \( 1 - 132.T + 2.97e4T^{2} \)
37 \( 1 + 247. iT - 5.06e4T^{2} \)
41 \( 1 + 198.T + 6.89e4T^{2} \)
43 \( 1 + 404. iT - 7.95e4T^{2} \)
47 \( 1 + 78.3T + 1.03e5T^{2} \)
53 \( 1 + 743. iT - 1.48e5T^{2} \)
59 \( 1 + 65.8iT - 2.05e5T^{2} \)
61 \( 1 + 273. iT - 2.26e5T^{2} \)
67 \( 1 + 399. iT - 3.00e5T^{2} \)
71 \( 1 + 727.T + 3.57e5T^{2} \)
73 \( 1 + 106.T + 3.89e5T^{2} \)
79 \( 1 - 58.9T + 4.93e5T^{2} \)
83 \( 1 + 580. iT - 5.71e5T^{2} \)
89 \( 1 - 768.T + 7.04e5T^{2} \)
97 \( 1 + 809.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.354132879851938128649215074098, −8.789421873502167065082645204738, −8.042844618980705963693605373968, −6.71749437992052652466180307560, −5.44980105650752861835068729729, −4.94826443983000665887488946894, −4.15286644242156118598265950375, −3.33312006195568292232155480244, −1.77116347144717109233671762589, −0.080025516966570169121561703355, 1.15627354942952423732736285470, 2.45927271131856867061771147925, 2.97919269177880526235097329091, 4.51848012279439401442769510107, 6.03586488121605601362038320102, 6.48409582046857299660535975975, 7.11640913300218700285076783699, 7.946786840375326299185446266064, 8.670565612475386667165874002563, 9.766403392110889442208503479221

Graph of the $Z$-function along the critical line