Properties

Label 2-2e10-1.1-c3-0-44
Degree $2$
Conductor $1024$
Sign $1$
Analytic cond. $60.4179$
Root an. cond. $7.77289$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9.55·3-s − 14.9·5-s + 16.3·7-s + 64.3·9-s + 46.9·11-s − 21.8·13-s − 142.·15-s − 8.65·17-s + 34.4·19-s + 156.·21-s − 78.5·23-s + 97.9·25-s + 356.·27-s + 99.1·29-s + 26.9·31-s + 448.·33-s − 244.·35-s + 445.·37-s − 208.·39-s + 186.·41-s − 392.·43-s − 960.·45-s + 214.·47-s − 75.8·49-s − 82.7·51-s + 368.·53-s − 700.·55-s + ⋯
L(s)  = 1  + 1.83·3-s − 1.33·5-s + 0.882·7-s + 2.38·9-s + 1.28·11-s − 0.465·13-s − 2.45·15-s − 0.123·17-s + 0.415·19-s + 1.62·21-s − 0.712·23-s + 0.783·25-s + 2.54·27-s + 0.634·29-s + 0.156·31-s + 2.36·33-s − 1.17·35-s + 1.97·37-s − 0.856·39-s + 0.709·41-s − 1.39·43-s − 3.18·45-s + 0.665·47-s − 0.221·49-s − 0.227·51-s + 0.955·53-s − 1.71·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1024 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1024 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1024\)    =    \(2^{10}\)
Sign: $1$
Analytic conductor: \(60.4179\)
Root analytic conductor: \(7.77289\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1024,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(4.162789466\)
\(L(\frac12)\) \(\approx\) \(4.162789466\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
good3 \( 1 - 9.55T + 27T^{2} \)
5 \( 1 + 14.9T + 125T^{2} \)
7 \( 1 - 16.3T + 343T^{2} \)
11 \( 1 - 46.9T + 1.33e3T^{2} \)
13 \( 1 + 21.8T + 2.19e3T^{2} \)
17 \( 1 + 8.65T + 4.91e3T^{2} \)
19 \( 1 - 34.4T + 6.85e3T^{2} \)
23 \( 1 + 78.5T + 1.21e4T^{2} \)
29 \( 1 - 99.1T + 2.43e4T^{2} \)
31 \( 1 - 26.9T + 2.97e4T^{2} \)
37 \( 1 - 445.T + 5.06e4T^{2} \)
41 \( 1 - 186.T + 6.89e4T^{2} \)
43 \( 1 + 392.T + 7.95e4T^{2} \)
47 \( 1 - 214.T + 1.03e5T^{2} \)
53 \( 1 - 368.T + 1.48e5T^{2} \)
59 \( 1 + 60.7T + 2.05e5T^{2} \)
61 \( 1 + 803.T + 2.26e5T^{2} \)
67 \( 1 - 303.T + 3.00e5T^{2} \)
71 \( 1 + 293.T + 3.57e5T^{2} \)
73 \( 1 - 1.01e3T + 3.89e5T^{2} \)
79 \( 1 + 257.T + 4.93e5T^{2} \)
83 \( 1 - 1.18e3T + 5.71e5T^{2} \)
89 \( 1 + 383.T + 7.04e5T^{2} \)
97 \( 1 + 179.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.290522546183171554875977545296, −8.636110305182609329266624516095, −7.83491655022356747533078735774, −7.59923801722725333111569774737, −6.51387800491526360578136436167, −4.66148908005816105871947901043, −4.09868260185307833647759611663, −3.33302416673510407023766453153, −2.22660066443784377891790677477, −1.07037853257089919400714244393, 1.07037853257089919400714244393, 2.22660066443784377891790677477, 3.33302416673510407023766453153, 4.09868260185307833647759611663, 4.66148908005816105871947901043, 6.51387800491526360578136436167, 7.59923801722725333111569774737, 7.83491655022356747533078735774, 8.636110305182609329266624516095, 9.290522546183171554875977545296

Graph of the $Z$-function along the critical line