| L(s) = 1 | + (1 − i)2-s − 1.73·3-s − 2i·4-s + (−1.48 + 1.48i)5-s + (−1.73 + 1.73i)6-s + (1.99 + 1.99i)7-s + (−2 − 2i)8-s + 2.99·9-s + 2.96i·10-s + (−1.05 − 1.05i)11-s + 3.46i·12-s + 3.98·14-s + (2.56 − 2.56i)15-s − 4·16-s − 21.8i·17-s + (2.99 − 2.99i)18-s + ⋯ |
| L(s) = 1 | + (0.5 − 0.5i)2-s − 0.577·3-s − 0.5i·4-s + (−0.296 + 0.296i)5-s + (−0.288 + 0.288i)6-s + (0.284 + 0.284i)7-s + (−0.250 − 0.250i)8-s + 0.333·9-s + 0.296i·10-s + (−0.0955 − 0.0955i)11-s + 0.288i·12-s + 0.284·14-s + (0.171 − 0.171i)15-s − 0.250·16-s − 1.28i·17-s + (0.166 − 0.166i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1014 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.944 + 0.329i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1014 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.944 + 0.329i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{3}{2})\) |
\(\approx\) |
\(0.9141071947\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.9141071947\) |
| \(L(2)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-1 + i)T \) |
| 3 | \( 1 + 1.73T \) |
| 13 | \( 1 \) |
| good | 5 | \( 1 + (1.48 - 1.48i)T - 25iT^{2} \) |
| 7 | \( 1 + (-1.99 - 1.99i)T + 49iT^{2} \) |
| 11 | \( 1 + (1.05 + 1.05i)T + 121iT^{2} \) |
| 17 | \( 1 + 21.8iT - 289T^{2} \) |
| 19 | \( 1 + (4.68 - 4.68i)T - 361iT^{2} \) |
| 23 | \( 1 - 1.76iT - 529T^{2} \) |
| 29 | \( 1 - 12.4T + 841T^{2} \) |
| 31 | \( 1 + (8.50 - 8.50i)T - 961iT^{2} \) |
| 37 | \( 1 + (27.3 + 27.3i)T + 1.36e3iT^{2} \) |
| 41 | \( 1 + (-47.8 + 47.8i)T - 1.68e3iT^{2} \) |
| 43 | \( 1 + 80.7iT - 1.84e3T^{2} \) |
| 47 | \( 1 + (33.7 + 33.7i)T + 2.20e3iT^{2} \) |
| 53 | \( 1 + 101.T + 2.80e3T^{2} \) |
| 59 | \( 1 + (-12.1 - 12.1i)T + 3.48e3iT^{2} \) |
| 61 | \( 1 + 88.5T + 3.72e3T^{2} \) |
| 67 | \( 1 + (29.2 - 29.2i)T - 4.48e3iT^{2} \) |
| 71 | \( 1 + (9.07 - 9.07i)T - 5.04e3iT^{2} \) |
| 73 | \( 1 + (12.1 + 12.1i)T + 5.32e3iT^{2} \) |
| 79 | \( 1 + 110.T + 6.24e3T^{2} \) |
| 83 | \( 1 + (34.1 - 34.1i)T - 6.88e3iT^{2} \) |
| 89 | \( 1 + (-71.5 - 71.5i)T + 7.92e3iT^{2} \) |
| 97 | \( 1 + (34.1 - 34.1i)T - 9.40e3iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.532579800815972272734086291968, −8.724432764467427195532737853166, −7.48647025475271052199912829608, −6.82863829987342719107400521679, −5.66425229532557274132848416689, −5.09249294285531008869054612601, −4.03033373092065776625416488233, −3.01258454122548785288495846296, −1.78998113520285015291069413242, −0.26247913673372692687216765018,
1.42703103609862199974296303566, 3.05696072554890304613637002184, 4.39215955083924491106126082527, 4.70042840621610206126082125894, 6.04941446259116658781445562025, 6.44763909645056587814970565652, 7.71626529710220902427505314737, 8.137974777470456968656851186775, 9.227983605056572630526405952882, 10.26499425283038595423666746553