Properties

Label 2-1011-1.1-c3-0-17
Degree $2$
Conductor $1011$
Sign $1$
Analytic cond. $59.6509$
Root an. cond. $7.72340$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.59·2-s − 3·3-s + 13.1·4-s − 0.882·5-s + 13.7·6-s − 25.5·7-s − 23.5·8-s + 9·9-s + 4.05·10-s + 9.51·11-s − 39.3·12-s + 17.9·13-s + 117.·14-s + 2.64·15-s + 3.11·16-s − 75.2·17-s − 41.3·18-s + 153.·19-s − 11.5·20-s + 76.6·21-s − 43.7·22-s − 112.·23-s + 70.5·24-s − 124.·25-s − 82.4·26-s − 27·27-s − 335.·28-s + ⋯
L(s)  = 1  − 1.62·2-s − 0.577·3-s + 1.63·4-s − 0.0789·5-s + 0.938·6-s − 1.37·7-s − 1.03·8-s + 0.333·9-s + 0.128·10-s + 0.260·11-s − 0.946·12-s + 0.382·13-s + 2.24·14-s + 0.0455·15-s + 0.0487·16-s − 1.07·17-s − 0.541·18-s + 1.85·19-s − 0.129·20-s + 0.796·21-s − 0.423·22-s − 1.01·23-s + 0.599·24-s − 0.993·25-s − 0.621·26-s − 0.192·27-s − 2.26·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1011 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1011 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1011\)    =    \(3 \cdot 337\)
Sign: $1$
Analytic conductor: \(59.6509\)
Root analytic conductor: \(7.72340\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1011,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.3094383625\)
\(L(\frac12)\) \(\approx\) \(0.3094383625\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 3T \)
337 \( 1 + 337T \)
good2 \( 1 + 4.59T + 8T^{2} \)
5 \( 1 + 0.882T + 125T^{2} \)
7 \( 1 + 25.5T + 343T^{2} \)
11 \( 1 - 9.51T + 1.33e3T^{2} \)
13 \( 1 - 17.9T + 2.19e3T^{2} \)
17 \( 1 + 75.2T + 4.91e3T^{2} \)
19 \( 1 - 153.T + 6.85e3T^{2} \)
23 \( 1 + 112.T + 1.21e4T^{2} \)
29 \( 1 - 194.T + 2.43e4T^{2} \)
31 \( 1 + 190.T + 2.97e4T^{2} \)
37 \( 1 + 391.T + 5.06e4T^{2} \)
41 \( 1 - 399.T + 6.89e4T^{2} \)
43 \( 1 - 384.T + 7.95e4T^{2} \)
47 \( 1 + 253.T + 1.03e5T^{2} \)
53 \( 1 + 30.6T + 1.48e5T^{2} \)
59 \( 1 + 367.T + 2.05e5T^{2} \)
61 \( 1 + 394.T + 2.26e5T^{2} \)
67 \( 1 + 629.T + 3.00e5T^{2} \)
71 \( 1 - 483.T + 3.57e5T^{2} \)
73 \( 1 + 486.T + 3.89e5T^{2} \)
79 \( 1 + 303.T + 4.93e5T^{2} \)
83 \( 1 + 426.T + 5.71e5T^{2} \)
89 \( 1 + 439.T + 7.04e5T^{2} \)
97 \( 1 - 1.23e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.439896324288707238545846035100, −9.110020675192341189206494487504, −7.939347987037670847135877772698, −7.16896614886979610233874425887, −6.46439556041352306583555803369, −5.68663077828749649171488812569, −4.14499575610957732278936071442, −2.94766580347995575173623045015, −1.58952475936999339652504145391, −0.39484163544998363462169014139, 0.39484163544998363462169014139, 1.58952475936999339652504145391, 2.94766580347995575173623045015, 4.14499575610957732278936071442, 5.68663077828749649171488812569, 6.46439556041352306583555803369, 7.16896614886979610233874425887, 7.939347987037670847135877772698, 9.110020675192341189206494487504, 9.439896324288707238545846035100

Graph of the $Z$-function along the critical line