Properties

Label 2-1011-1.1-c3-0-99
Degree $2$
Conductor $1011$
Sign $1$
Analytic cond. $59.6509$
Root an. cond. $7.72340$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.84·2-s − 3·3-s + 15.5·4-s + 10.4·5-s − 14.5·6-s − 8.74·7-s + 36.3·8-s + 9·9-s + 50.4·10-s + 18.6·11-s − 46.5·12-s + 81.8·13-s − 42.3·14-s − 31.2·15-s + 52.4·16-s + 17.6·17-s + 43.6·18-s + 66.3·19-s + 161.·20-s + 26.2·21-s + 90.4·22-s − 147.·23-s − 109.·24-s − 16.7·25-s + 396.·26-s − 27·27-s − 135.·28-s + ⋯
L(s)  = 1  + 1.71·2-s − 0.577·3-s + 1.93·4-s + 0.930·5-s − 0.989·6-s − 0.471·7-s + 1.60·8-s + 0.333·9-s + 1.59·10-s + 0.511·11-s − 1.11·12-s + 1.74·13-s − 0.808·14-s − 0.537·15-s + 0.818·16-s + 0.252·17-s + 0.571·18-s + 0.801·19-s + 1.80·20-s + 0.272·21-s + 0.876·22-s − 1.33·23-s − 0.928·24-s − 0.134·25-s + 2.99·26-s − 0.192·27-s − 0.914·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1011 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1011 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1011\)    =    \(3 \cdot 337\)
Sign: $1$
Analytic conductor: \(59.6509\)
Root analytic conductor: \(7.72340\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1011,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(6.486642724\)
\(L(\frac12)\) \(\approx\) \(6.486642724\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 3T \)
337 \( 1 + 337T \)
good2 \( 1 - 4.84T + 8T^{2} \)
5 \( 1 - 10.4T + 125T^{2} \)
7 \( 1 + 8.74T + 343T^{2} \)
11 \( 1 - 18.6T + 1.33e3T^{2} \)
13 \( 1 - 81.8T + 2.19e3T^{2} \)
17 \( 1 - 17.6T + 4.91e3T^{2} \)
19 \( 1 - 66.3T + 6.85e3T^{2} \)
23 \( 1 + 147.T + 1.21e4T^{2} \)
29 \( 1 - 107.T + 2.43e4T^{2} \)
31 \( 1 + 206.T + 2.97e4T^{2} \)
37 \( 1 - 201.T + 5.06e4T^{2} \)
41 \( 1 - 292.T + 6.89e4T^{2} \)
43 \( 1 - 182.T + 7.95e4T^{2} \)
47 \( 1 - 306.T + 1.03e5T^{2} \)
53 \( 1 - 611.T + 1.48e5T^{2} \)
59 \( 1 - 521.T + 2.05e5T^{2} \)
61 \( 1 - 798.T + 2.26e5T^{2} \)
67 \( 1 + 591.T + 3.00e5T^{2} \)
71 \( 1 + 848.T + 3.57e5T^{2} \)
73 \( 1 - 11.4T + 3.89e5T^{2} \)
79 \( 1 - 170.T + 4.93e5T^{2} \)
83 \( 1 + 697.T + 5.71e5T^{2} \)
89 \( 1 + 45.5T + 7.04e5T^{2} \)
97 \( 1 - 1.77e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.823009190094512212591898065231, −8.853113510413052528603850466212, −7.45387665569435056431300239964, −6.45386266520877992702952122000, −5.89027373075237148313069741767, −5.54771221326616715462687437047, −4.19005299219900323754731020211, −3.61388827964629278680399100830, −2.36161741565728731854258136966, −1.18652058646895822239820867487, 1.18652058646895822239820867487, 2.36161741565728731854258136966, 3.61388827964629278680399100830, 4.19005299219900323754731020211, 5.54771221326616715462687437047, 5.89027373075237148313069741767, 6.45386266520877992702952122000, 7.45387665569435056431300239964, 8.853113510413052528603850466212, 9.823009190094512212591898065231

Graph of the $Z$-function along the critical line