Properties

Label 2-1011-1.1-c3-0-30
Degree $2$
Conductor $1011$
Sign $1$
Analytic cond. $59.6509$
Root an. cond. $7.72340$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.39·2-s − 3·3-s − 2.26·4-s + 5.91·5-s − 7.18·6-s − 28.4·7-s − 24.5·8-s + 9·9-s + 14.1·10-s + 7.44·11-s + 6.79·12-s + 41.9·13-s − 68.0·14-s − 17.7·15-s − 40.7·16-s + 95.9·17-s + 21.5·18-s − 163.·19-s − 13.3·20-s + 85.2·21-s + 17.8·22-s − 76.9·23-s + 73.7·24-s − 90.0·25-s + 100.·26-s − 27·27-s + 64.3·28-s + ⋯
L(s)  = 1  + 0.846·2-s − 0.577·3-s − 0.282·4-s + 0.528·5-s − 0.488·6-s − 1.53·7-s − 1.08·8-s + 0.333·9-s + 0.447·10-s + 0.204·11-s + 0.163·12-s + 0.895·13-s − 1.29·14-s − 0.305·15-s − 0.637·16-s + 1.36·17-s + 0.282·18-s − 1.96·19-s − 0.149·20-s + 0.886·21-s + 0.172·22-s − 0.697·23-s + 0.627·24-s − 0.720·25-s + 0.758·26-s − 0.192·27-s + 0.434·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1011 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1011 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1011\)    =    \(3 \cdot 337\)
Sign: $1$
Analytic conductor: \(59.6509\)
Root analytic conductor: \(7.72340\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1011,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.462900378\)
\(L(\frac12)\) \(\approx\) \(1.462900378\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 3T \)
337 \( 1 + 337T \)
good2 \( 1 - 2.39T + 8T^{2} \)
5 \( 1 - 5.91T + 125T^{2} \)
7 \( 1 + 28.4T + 343T^{2} \)
11 \( 1 - 7.44T + 1.33e3T^{2} \)
13 \( 1 - 41.9T + 2.19e3T^{2} \)
17 \( 1 - 95.9T + 4.91e3T^{2} \)
19 \( 1 + 163.T + 6.85e3T^{2} \)
23 \( 1 + 76.9T + 1.21e4T^{2} \)
29 \( 1 + 286.T + 2.43e4T^{2} \)
31 \( 1 + 98.9T + 2.97e4T^{2} \)
37 \( 1 - 319.T + 5.06e4T^{2} \)
41 \( 1 - 155.T + 6.89e4T^{2} \)
43 \( 1 - 493.T + 7.95e4T^{2} \)
47 \( 1 + 93.4T + 1.03e5T^{2} \)
53 \( 1 - 400.T + 1.48e5T^{2} \)
59 \( 1 - 783.T + 2.05e5T^{2} \)
61 \( 1 + 685.T + 2.26e5T^{2} \)
67 \( 1 - 649.T + 3.00e5T^{2} \)
71 \( 1 - 334.T + 3.57e5T^{2} \)
73 \( 1 - 718.T + 3.89e5T^{2} \)
79 \( 1 - 300.T + 4.93e5T^{2} \)
83 \( 1 + 246.T + 5.71e5T^{2} \)
89 \( 1 - 1.11e3T + 7.04e5T^{2} \)
97 \( 1 - 789.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.569665727135963462776568602890, −9.062856168910238282895537337884, −7.81357884238850343823684172897, −6.50056556119485413749650379236, −5.98924307789219156887730937970, −5.55125843198945334603880978304, −4.02242705463765522651824906798, −3.69589269970312923335663841308, −2.29983370518031944479491258228, −0.56450870120334073902932372197, 0.56450870120334073902932372197, 2.29983370518031944479491258228, 3.69589269970312923335663841308, 4.02242705463765522651824906798, 5.55125843198945334603880978304, 5.98924307789219156887730937970, 6.50056556119485413749650379236, 7.81357884238850343823684172897, 9.062856168910238282895537337884, 9.569665727135963462776568602890

Graph of the $Z$-function along the critical line