Properties

Label 2-1008-84.83-c2-0-30
Degree $2$
Conductor $1008$
Sign $-0.942 - 0.332i$
Analytic cond. $27.4660$
Root an. cond. $5.24080$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.34·5-s + (−0.646 − 6.97i)7-s − 7.76·11-s − 13.4i·13-s + 28.9·17-s + 32.7·19-s − 16.8·23-s − 6.12·25-s + 38.3i·29-s − 50.1·31-s + (2.80 + 30.2i)35-s − 39.1·37-s − 63.0·41-s − 7.01i·43-s − 23.4i·47-s + ⋯
L(s)  = 1  − 0.868·5-s + (−0.0922 − 0.995i)7-s − 0.705·11-s − 1.03i·13-s + 1.70·17-s + 1.72·19-s − 0.732·23-s − 0.245·25-s + 1.32i·29-s − 1.61·31-s + (0.0801 + 0.865i)35-s − 1.05·37-s − 1.53·41-s − 0.163i·43-s − 0.499i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.942 - 0.332i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.942 - 0.332i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1008\)    =    \(2^{4} \cdot 3^{2} \cdot 7\)
Sign: $-0.942 - 0.332i$
Analytic conductor: \(27.4660\)
Root analytic conductor: \(5.24080\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{1008} (1007, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1008,\ (\ :1),\ -0.942 - 0.332i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.1667733855\)
\(L(\frac12)\) \(\approx\) \(0.1667733855\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + (0.646 + 6.97i)T \)
good5 \( 1 + 4.34T + 25T^{2} \)
11 \( 1 + 7.76T + 121T^{2} \)
13 \( 1 + 13.4iT - 169T^{2} \)
17 \( 1 - 28.9T + 289T^{2} \)
19 \( 1 - 32.7T + 361T^{2} \)
23 \( 1 + 16.8T + 529T^{2} \)
29 \( 1 - 38.3iT - 841T^{2} \)
31 \( 1 + 50.1T + 961T^{2} \)
37 \( 1 + 39.1T + 1.36e3T^{2} \)
41 \( 1 + 63.0T + 1.68e3T^{2} \)
43 \( 1 + 7.01iT - 1.84e3T^{2} \)
47 \( 1 + 23.4iT - 2.20e3T^{2} \)
53 \( 1 - 90.9iT - 2.80e3T^{2} \)
59 \( 1 + 78.1iT - 3.48e3T^{2} \)
61 \( 1 - 49.9iT - 3.72e3T^{2} \)
67 \( 1 + 15.8iT - 4.48e3T^{2} \)
71 \( 1 + 62.1T + 5.04e3T^{2} \)
73 \( 1 + 59.7iT - 5.32e3T^{2} \)
79 \( 1 + 137. iT - 6.24e3T^{2} \)
83 \( 1 - 102. iT - 6.88e3T^{2} \)
89 \( 1 - 26.6T + 7.92e3T^{2} \)
97 \( 1 - 105. iT - 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.436047804990329077497994675330, −8.167305386717536007153295241235, −7.60391935691678231021314895817, −7.16943318961203096442703193234, −5.63266993292253769475315436805, −5.04842742800956539730158965324, −3.54849012644120944459495167766, −3.31964504195268851983291464035, −1.30145098996130604475378233875, −0.05540276505433655388862352708, 1.73712076953272454785031983933, 3.07504412074344571683928796995, 3.88388113005839716031958006626, 5.21480876002073776532185074907, 5.73647406530740263526715138316, 7.04586866117343731246294076844, 7.79561297318968020342318864941, 8.425968786063050485315017390886, 9.527615135555475108223949824744, 9.993640209966313790137991754207

Graph of the $Z$-function along the critical line