L(s) = 1 | + 4.34·5-s + (−0.646 − 6.97i)7-s + 7.76·11-s − 13.4i·13-s − 28.9·17-s + 32.7·19-s + 16.8·23-s − 6.12·25-s − 38.3i·29-s − 50.1·31-s + (−2.80 − 30.2i)35-s − 39.1·37-s + 63.0·41-s − 7.01i·43-s + 23.4i·47-s + ⋯ |
L(s) = 1 | + 0.868·5-s + (−0.0922 − 0.995i)7-s + 0.705·11-s − 1.03i·13-s − 1.70·17-s + 1.72·19-s + 0.732·23-s − 0.245·25-s − 1.32i·29-s − 1.61·31-s + (−0.0801 − 0.865i)35-s − 1.05·37-s + 1.53·41-s − 0.163i·43-s + 0.499i·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.000539 + 0.999i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.000539 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.978908641\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.978908641\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (0.646 + 6.97i)T \) |
good | 5 | \( 1 - 4.34T + 25T^{2} \) |
| 11 | \( 1 - 7.76T + 121T^{2} \) |
| 13 | \( 1 + 13.4iT - 169T^{2} \) |
| 17 | \( 1 + 28.9T + 289T^{2} \) |
| 19 | \( 1 - 32.7T + 361T^{2} \) |
| 23 | \( 1 - 16.8T + 529T^{2} \) |
| 29 | \( 1 + 38.3iT - 841T^{2} \) |
| 31 | \( 1 + 50.1T + 961T^{2} \) |
| 37 | \( 1 + 39.1T + 1.36e3T^{2} \) |
| 41 | \( 1 - 63.0T + 1.68e3T^{2} \) |
| 43 | \( 1 + 7.01iT - 1.84e3T^{2} \) |
| 47 | \( 1 - 23.4iT - 2.20e3T^{2} \) |
| 53 | \( 1 + 90.9iT - 2.80e3T^{2} \) |
| 59 | \( 1 - 78.1iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 49.9iT - 3.72e3T^{2} \) |
| 67 | \( 1 + 15.8iT - 4.48e3T^{2} \) |
| 71 | \( 1 - 62.1T + 5.04e3T^{2} \) |
| 73 | \( 1 + 59.7iT - 5.32e3T^{2} \) |
| 79 | \( 1 + 137. iT - 6.24e3T^{2} \) |
| 83 | \( 1 + 102. iT - 6.88e3T^{2} \) |
| 89 | \( 1 + 26.6T + 7.92e3T^{2} \) |
| 97 | \( 1 - 105. iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.524246424916973538161892504333, −8.991388582545590900764723203087, −7.72249140284835557692854487256, −7.07106734033665296240715727753, −6.13691741983326285433222328923, −5.29477627784324177852011687499, −4.20857996172637759878995373083, −3.19782091050711932750829632349, −1.88398049662797412232911343229, −0.61532650272197707226296661734,
1.52739402215752635175502489646, 2.40825197772200581088919360620, 3.65560898329031902151399889014, 4.92790444111841003617203924315, 5.66561356480232452723985232019, 6.59533540899238264836578342411, 7.23079658037217843741677476044, 8.695692422766840111595585850334, 9.251783642226347687230858985824, 9.571583613005449228873214576770