Properties

Label 2-1008-84.83-c2-0-8
Degree $2$
Conductor $1008$
Sign $-0.0602 - 0.998i$
Analytic cond. $27.4660$
Root an. cond. $5.24080$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.718·5-s + (−6.52 − 2.54i)7-s + 13.1·11-s + 12.0i·13-s − 17.0·17-s + 6.05·19-s − 10.8·23-s − 24.4·25-s + 8.20i·29-s + 36.6·31-s + (−4.68 − 1.82i)35-s + 45.0·37-s − 62.4·41-s − 12.0i·43-s + 87.3i·47-s + ⋯
L(s)  = 1  + 0.143·5-s + (−0.931 − 0.362i)7-s + 1.19·11-s + 0.926i·13-s − 1.00·17-s + 0.318·19-s − 0.473·23-s − 0.979·25-s + 0.282i·29-s + 1.18·31-s + (−0.133 − 0.0521i)35-s + 1.21·37-s − 1.52·41-s − 0.279i·43-s + 1.85i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0602 - 0.998i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.0602 - 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1008\)    =    \(2^{4} \cdot 3^{2} \cdot 7\)
Sign: $-0.0602 - 0.998i$
Analytic conductor: \(27.4660\)
Root analytic conductor: \(5.24080\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{1008} (1007, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1008,\ (\ :1),\ -0.0602 - 0.998i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.193412017\)
\(L(\frac12)\) \(\approx\) \(1.193412017\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + (6.52 + 2.54i)T \)
good5 \( 1 - 0.718T + 25T^{2} \)
11 \( 1 - 13.1T + 121T^{2} \)
13 \( 1 - 12.0iT - 169T^{2} \)
17 \( 1 + 17.0T + 289T^{2} \)
19 \( 1 - 6.05T + 361T^{2} \)
23 \( 1 + 10.8T + 529T^{2} \)
29 \( 1 - 8.20iT - 841T^{2} \)
31 \( 1 - 36.6T + 961T^{2} \)
37 \( 1 - 45.0T + 1.36e3T^{2} \)
41 \( 1 + 62.4T + 1.68e3T^{2} \)
43 \( 1 + 12.0iT - 1.84e3T^{2} \)
47 \( 1 - 87.3iT - 2.20e3T^{2} \)
53 \( 1 - 74.7iT - 2.80e3T^{2} \)
59 \( 1 - 22.0iT - 3.48e3T^{2} \)
61 \( 1 - 57.2iT - 3.72e3T^{2} \)
67 \( 1 - 47.6iT - 4.48e3T^{2} \)
71 \( 1 - 66.4T + 5.04e3T^{2} \)
73 \( 1 - 36.0iT - 5.32e3T^{2} \)
79 \( 1 + 46.6iT - 6.24e3T^{2} \)
83 \( 1 - 38.2iT - 6.88e3T^{2} \)
89 \( 1 + 126.T + 7.92e3T^{2} \)
97 \( 1 - 126. iT - 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.730149643691221710679575945854, −9.367432759943267394405180607456, −8.460849512068737743824194129648, −7.28784434362134585398441224307, −6.53538195018820240154826917346, −5.99942080668444771911747401132, −4.47278345132311104825250922988, −3.87653284758406705428278982309, −2.61293180338520901050235730392, −1.26499495132178373861496765068, 0.39208063661879508175121503776, 2.00922741283746482402665931594, 3.20643519489097496404706922197, 4.09089398523618698410241689969, 5.31464322088012573970591437809, 6.30014885068401141324123132552, 6.75349878685798230498018293439, 8.012869223771203253675477538621, 8.759444987266900842415819831572, 9.728800813488524323116925645330

Graph of the $Z$-function along the critical line