L(s) = 1 | + 0.718·5-s + (−6.52 − 2.54i)7-s + 13.1·11-s + 12.0i·13-s − 17.0·17-s + 6.05·19-s − 10.8·23-s − 24.4·25-s + 8.20i·29-s + 36.6·31-s + (−4.68 − 1.82i)35-s + 45.0·37-s − 62.4·41-s − 12.0i·43-s + 87.3i·47-s + ⋯ |
L(s) = 1 | + 0.143·5-s + (−0.931 − 0.362i)7-s + 1.19·11-s + 0.926i·13-s − 1.00·17-s + 0.318·19-s − 0.473·23-s − 0.979·25-s + 0.282i·29-s + 1.18·31-s + (−0.133 − 0.0521i)35-s + 1.21·37-s − 1.52·41-s − 0.279i·43-s + 1.85i·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0602 - 0.998i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.0602 - 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.193412017\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.193412017\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (6.52 + 2.54i)T \) |
good | 5 | \( 1 - 0.718T + 25T^{2} \) |
| 11 | \( 1 - 13.1T + 121T^{2} \) |
| 13 | \( 1 - 12.0iT - 169T^{2} \) |
| 17 | \( 1 + 17.0T + 289T^{2} \) |
| 19 | \( 1 - 6.05T + 361T^{2} \) |
| 23 | \( 1 + 10.8T + 529T^{2} \) |
| 29 | \( 1 - 8.20iT - 841T^{2} \) |
| 31 | \( 1 - 36.6T + 961T^{2} \) |
| 37 | \( 1 - 45.0T + 1.36e3T^{2} \) |
| 41 | \( 1 + 62.4T + 1.68e3T^{2} \) |
| 43 | \( 1 + 12.0iT - 1.84e3T^{2} \) |
| 47 | \( 1 - 87.3iT - 2.20e3T^{2} \) |
| 53 | \( 1 - 74.7iT - 2.80e3T^{2} \) |
| 59 | \( 1 - 22.0iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 57.2iT - 3.72e3T^{2} \) |
| 67 | \( 1 - 47.6iT - 4.48e3T^{2} \) |
| 71 | \( 1 - 66.4T + 5.04e3T^{2} \) |
| 73 | \( 1 - 36.0iT - 5.32e3T^{2} \) |
| 79 | \( 1 + 46.6iT - 6.24e3T^{2} \) |
| 83 | \( 1 - 38.2iT - 6.88e3T^{2} \) |
| 89 | \( 1 + 126.T + 7.92e3T^{2} \) |
| 97 | \( 1 - 126. iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.730149643691221710679575945854, −9.367432759943267394405180607456, −8.460849512068737743824194129648, −7.28784434362134585398441224307, −6.53538195018820240154826917346, −5.99942080668444771911747401132, −4.47278345132311104825250922988, −3.87653284758406705428278982309, −2.61293180338520901050235730392, −1.26499495132178373861496765068,
0.39208063661879508175121503776, 2.00922741283746482402665931594, 3.20643519489097496404706922197, 4.09089398523618698410241689969, 5.31464322088012573970591437809, 6.30014885068401141324123132552, 6.75349878685798230498018293439, 8.012869223771203253675477538621, 8.759444987266900842415819831572, 9.728800813488524323116925645330