Properties

Label 2-1008-84.83-c2-0-23
Degree $2$
Conductor $1008$
Sign $0.719 + 0.694i$
Analytic cond. $27.4660$
Root an. cond. $5.24080$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.718·5-s + (6.52 − 2.54i)7-s + 13.1·11-s − 12.0i·13-s + 17.0·17-s − 6.05·19-s − 10.8·23-s − 24.4·25-s + 8.20i·29-s − 36.6·31-s + (−4.68 + 1.82i)35-s + 45.0·37-s + 62.4·41-s − 12.0i·43-s − 87.3i·47-s + ⋯
L(s)  = 1  − 0.143·5-s + (0.931 − 0.362i)7-s + 1.19·11-s − 0.926i·13-s + 1.00·17-s − 0.318·19-s − 0.473·23-s − 0.979·25-s + 0.282i·29-s − 1.18·31-s + (−0.133 + 0.0521i)35-s + 1.21·37-s + 1.52·41-s − 0.279i·43-s − 1.85i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.719 + 0.694i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.719 + 0.694i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1008\)    =    \(2^{4} \cdot 3^{2} \cdot 7\)
Sign: $0.719 + 0.694i$
Analytic conductor: \(27.4660\)
Root analytic conductor: \(5.24080\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{1008} (1007, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1008,\ (\ :1),\ 0.719 + 0.694i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(2.197592342\)
\(L(\frac12)\) \(\approx\) \(2.197592342\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + (-6.52 + 2.54i)T \)
good5 \( 1 + 0.718T + 25T^{2} \)
11 \( 1 - 13.1T + 121T^{2} \)
13 \( 1 + 12.0iT - 169T^{2} \)
17 \( 1 - 17.0T + 289T^{2} \)
19 \( 1 + 6.05T + 361T^{2} \)
23 \( 1 + 10.8T + 529T^{2} \)
29 \( 1 - 8.20iT - 841T^{2} \)
31 \( 1 + 36.6T + 961T^{2} \)
37 \( 1 - 45.0T + 1.36e3T^{2} \)
41 \( 1 - 62.4T + 1.68e3T^{2} \)
43 \( 1 + 12.0iT - 1.84e3T^{2} \)
47 \( 1 + 87.3iT - 2.20e3T^{2} \)
53 \( 1 - 74.7iT - 2.80e3T^{2} \)
59 \( 1 + 22.0iT - 3.48e3T^{2} \)
61 \( 1 + 57.2iT - 3.72e3T^{2} \)
67 \( 1 - 47.6iT - 4.48e3T^{2} \)
71 \( 1 - 66.4T + 5.04e3T^{2} \)
73 \( 1 + 36.0iT - 5.32e3T^{2} \)
79 \( 1 + 46.6iT - 6.24e3T^{2} \)
83 \( 1 + 38.2iT - 6.88e3T^{2} \)
89 \( 1 - 126.T + 7.92e3T^{2} \)
97 \( 1 + 126. iT - 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.688106865231397658292844911020, −8.805125877474677057744489857997, −7.87328579461630959024581010110, −7.39514194827369542927054698517, −6.15984095584759256830577344152, −5.38353278728088783947444253653, −4.24937559359368549039966748368, −3.50827429108442835735488453130, −1.97742183592923015207533209255, −0.807014666762139502994286146422, 1.22956921188608336611155312509, 2.25659790518499125778778713945, 3.80157756853500782343281221614, 4.45240965071664509589645257335, 5.64712345009108483234523940055, 6.38737750712499763229754361839, 7.52241635009207165751753931796, 8.120938544923347765608613624908, 9.197445651745133499074131020970, 9.601608146039476283609241579097

Graph of the $Z$-function along the critical line