L(s) = 1 | − 0.718·5-s + (6.52 − 2.54i)7-s + 13.1·11-s − 12.0i·13-s + 17.0·17-s − 6.05·19-s − 10.8·23-s − 24.4·25-s + 8.20i·29-s − 36.6·31-s + (−4.68 + 1.82i)35-s + 45.0·37-s + 62.4·41-s − 12.0i·43-s − 87.3i·47-s + ⋯ |
L(s) = 1 | − 0.143·5-s + (0.931 − 0.362i)7-s + 1.19·11-s − 0.926i·13-s + 1.00·17-s − 0.318·19-s − 0.473·23-s − 0.979·25-s + 0.282i·29-s − 1.18·31-s + (−0.133 + 0.0521i)35-s + 1.21·37-s + 1.52·41-s − 0.279i·43-s − 1.85i·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.719 + 0.694i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.719 + 0.694i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(2.197592342\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.197592342\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-6.52 + 2.54i)T \) |
good | 5 | \( 1 + 0.718T + 25T^{2} \) |
| 11 | \( 1 - 13.1T + 121T^{2} \) |
| 13 | \( 1 + 12.0iT - 169T^{2} \) |
| 17 | \( 1 - 17.0T + 289T^{2} \) |
| 19 | \( 1 + 6.05T + 361T^{2} \) |
| 23 | \( 1 + 10.8T + 529T^{2} \) |
| 29 | \( 1 - 8.20iT - 841T^{2} \) |
| 31 | \( 1 + 36.6T + 961T^{2} \) |
| 37 | \( 1 - 45.0T + 1.36e3T^{2} \) |
| 41 | \( 1 - 62.4T + 1.68e3T^{2} \) |
| 43 | \( 1 + 12.0iT - 1.84e3T^{2} \) |
| 47 | \( 1 + 87.3iT - 2.20e3T^{2} \) |
| 53 | \( 1 - 74.7iT - 2.80e3T^{2} \) |
| 59 | \( 1 + 22.0iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 57.2iT - 3.72e3T^{2} \) |
| 67 | \( 1 - 47.6iT - 4.48e3T^{2} \) |
| 71 | \( 1 - 66.4T + 5.04e3T^{2} \) |
| 73 | \( 1 + 36.0iT - 5.32e3T^{2} \) |
| 79 | \( 1 + 46.6iT - 6.24e3T^{2} \) |
| 83 | \( 1 + 38.2iT - 6.88e3T^{2} \) |
| 89 | \( 1 - 126.T + 7.92e3T^{2} \) |
| 97 | \( 1 + 126. iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.688106865231397658292844911020, −8.805125877474677057744489857997, −7.87328579461630959024581010110, −7.39514194827369542927054698517, −6.15984095584759256830577344152, −5.38353278728088783947444253653, −4.24937559359368549039966748368, −3.50827429108442835735488453130, −1.97742183592923015207533209255, −0.807014666762139502994286146422,
1.22956921188608336611155312509, 2.25659790518499125778778713945, 3.80157756853500782343281221614, 4.45240965071664509589645257335, 5.64712345009108483234523940055, 6.38737750712499763229754361839, 7.52241635009207165751753931796, 8.120938544923347765608613624908, 9.197445651745133499074131020970, 9.601608146039476283609241579097