Properties

Label 4-1008e2-1.1-c2e2-0-14
Degree $4$
Conductor $1016064$
Sign $1$
Analytic cond. $754.381$
Root an. cond. $5.24080$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 11·7-s + 15·19-s − 25·25-s − 33·31-s + 47·37-s + 166·43-s + 72·49-s + 168·61-s − 109·67-s + 51·73-s + 131·79-s − 351·103-s + 143·109-s + 121·121-s + 127-s + 131-s + 165·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 337·169-s + 173-s − 275·175-s + ⋯
L(s)  = 1  + 11/7·7-s + 0.789·19-s − 25-s − 1.06·31-s + 1.27·37-s + 3.86·43-s + 1.46·49-s + 2.75·61-s − 1.62·67-s + 0.698·73-s + 1.65·79-s − 3.40·103-s + 1.31·109-s + 121-s + 0.00787·127-s + 0.00763·131-s + 1.24·133-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + 0.00613·163-s + 0.00598·167-s − 1.99·169-s + 0.00578·173-s − 1.57·175-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1016064 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1016064 ^{s/2} \, \Gamma_{\C}(s+1)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1016064\)    =    \(2^{8} \cdot 3^{4} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(754.381\)
Root analytic conductor: \(5.24080\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1016064,\ (\ :1, 1),\ 1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(3.873987229\)
\(L(\frac12)\) \(\approx\) \(3.873987229\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7$C_2$ \( 1 - 11 T + p^{2} T^{2} \)
good5$C_2$ \( ( 1 - p T + p^{2} T^{2} )( 1 + p T + p^{2} T^{2} ) \)
11$C_2^2$ \( 1 - p^{2} T^{2} + p^{4} T^{4} \)
13$C_2$ \( ( 1 - T + p^{2} T^{2} )( 1 + T + p^{2} T^{2} ) \)
17$C_2$ \( ( 1 - p T + p^{2} T^{2} )( 1 + p T + p^{2} T^{2} ) \)
19$C_2$ \( ( 1 - 26 T + p^{2} T^{2} )( 1 + 11 T + p^{2} T^{2} ) \)
23$C_2^2$ \( 1 - p^{2} T^{2} + p^{4} T^{4} \)
29$C_2$ \( ( 1 + p^{2} T^{2} )^{2} \)
31$C_2$ \( ( 1 - 13 T + p^{2} T^{2} )( 1 + 46 T + p^{2} T^{2} ) \)
37$C_2$ \( ( 1 - 73 T + p^{2} T^{2} )( 1 + 26 T + p^{2} T^{2} ) \)
41$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
43$C_2$ \( ( 1 - 83 T + p^{2} T^{2} )^{2} \)
47$C_2$ \( ( 1 - p T + p^{2} T^{2} )( 1 + p T + p^{2} T^{2} ) \)
53$C_2^2$ \( 1 - p^{2} T^{2} + p^{4} T^{4} \)
59$C_2$ \( ( 1 - p T + p^{2} T^{2} )( 1 + p T + p^{2} T^{2} ) \)
61$C_2$ \( ( 1 - 121 T + p^{2} T^{2} )( 1 - 47 T + p^{2} T^{2} ) \)
67$C_2$ \( ( 1 - 13 T + p^{2} T^{2} )( 1 + 122 T + p^{2} T^{2} ) \)
71$C_2$ \( ( 1 + p^{2} T^{2} )^{2} \)
73$C_2$ \( ( 1 - 97 T + p^{2} T^{2} )( 1 + 46 T + p^{2} T^{2} ) \)
79$C_2$ \( ( 1 - 142 T + p^{2} T^{2} )( 1 + 11 T + p^{2} T^{2} ) \)
83$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
89$C_2$ \( ( 1 - p T + p^{2} T^{2} )( 1 + p T + p^{2} T^{2} ) \)
97$C_2$ \( ( 1 - 2 T + p^{2} T^{2} )( 1 + 2 T + p^{2} T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.711684813060256571296528919157, −9.678700324405569018877628633601, −9.167911810484923979787621597143, −8.738386528741631877959795947785, −8.167394600741244506970976173251, −7.964806318823996140728831499573, −7.41992769751602685962718454440, −7.31210764455332505763592713756, −6.66044361692583330917486208986, −5.92673473001591665415986171910, −5.51541034061001099228545716879, −5.49065978869160734913704435982, −4.48435742174109074180335991185, −4.43813720504957652866900645661, −3.82677786692247108596845876722, −3.20561195909867726864755568519, −2.26400895768902160722413595289, −2.18375068163030849990210978951, −1.20140459710847769861807153748, −0.69889153736579179410188772967, 0.69889153736579179410188772967, 1.20140459710847769861807153748, 2.18375068163030849990210978951, 2.26400895768902160722413595289, 3.20561195909867726864755568519, 3.82677786692247108596845876722, 4.43813720504957652866900645661, 4.48435742174109074180335991185, 5.49065978869160734913704435982, 5.51541034061001099228545716879, 5.92673473001591665415986171910, 6.66044361692583330917486208986, 7.31210764455332505763592713756, 7.41992769751602685962718454440, 7.964806318823996140728831499573, 8.167394600741244506970976173251, 8.738386528741631877959795947785, 9.167911810484923979787621597143, 9.678700324405569018877628633601, 9.711684813060256571296528919157

Graph of the $Z$-function along the critical line