L(s) = 1 | + (1.70 − 0.278i)3-s − 0.542·5-s + (2.62 + 0.340i)7-s + (2.84 − 0.950i)9-s + 0.769i·11-s + (2.96 − 1.71i)13-s + (−0.926 + 0.150i)15-s + (3.23 + 5.60i)17-s + (−5.60 − 3.23i)19-s + (4.58 − 0.148i)21-s + 0.115i·23-s − 4.70·25-s + (4.59 − 2.41i)27-s + (4.40 + 2.54i)29-s + (−4.01 − 2.31i)31-s + ⋯ |
L(s) = 1 | + (0.987 − 0.160i)3-s − 0.242·5-s + (0.991 + 0.128i)7-s + (0.948 − 0.316i)9-s + 0.231i·11-s + (0.822 − 0.474i)13-s + (−0.239 + 0.0389i)15-s + (0.784 + 1.35i)17-s + (−1.28 − 0.742i)19-s + (0.999 − 0.0323i)21-s + 0.0241i·23-s − 0.941·25-s + (0.885 − 0.465i)27-s + (0.817 + 0.471i)29-s + (−0.720 − 0.416i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.994 + 0.107i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.994 + 0.107i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.520098993\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.520098993\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-1.70 + 0.278i)T \) |
| 7 | \( 1 + (-2.62 - 0.340i)T \) |
good | 5 | \( 1 + 0.542T + 5T^{2} \) |
| 11 | \( 1 - 0.769iT - 11T^{2} \) |
| 13 | \( 1 + (-2.96 + 1.71i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-3.23 - 5.60i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (5.60 + 3.23i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 - 0.115iT - 23T^{2} \) |
| 29 | \( 1 + (-4.40 - 2.54i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (4.01 + 2.31i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-5.47 + 9.48i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-4.04 - 7.00i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (3.32 - 5.76i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (0.773 + 1.33i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-0.221 + 0.127i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-5.12 + 8.86i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-4.83 + 2.78i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (1.64 - 2.84i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 5.67iT - 71T^{2} \) |
| 73 | \( 1 + (5.35 - 3.09i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-2.01 - 3.48i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (5.80 - 10.0i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (-2.00 + 3.47i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (15.0 + 8.69i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.882635754333012795002198830239, −8.908751951543950301817324929555, −8.141261851466320786054426690961, −7.86331269692668906365022754236, −6.67050179139425926632169732459, −5.68216793702775804309316496202, −4.39468538797874374025388087561, −3.73393991539659155600660449832, −2.42728852970045619719188280023, −1.38433417068587061127162615496,
1.38667266360701501715303977154, 2.55454298129836298873664205033, 3.78754458875614377750390845786, 4.44951656558087679907373137183, 5.57504165053865953971616729449, 6.80754465827612420898118170220, 7.72240818449112096733216154493, 8.319932718391859035846841811410, 8.965288566970819657743548226485, 9.954524957632185747999493774357