L(s) = 1 | + (−0.994 − 1.41i)3-s − 1.58·5-s + (1.06 − 2.42i)7-s + (−1.02 + 2.81i)9-s + 3.95i·11-s + (5.09 + 2.93i)13-s + (1.57 + 2.24i)15-s + (−3.19 + 5.53i)17-s + (6.37 − 3.68i)19-s + (−4.49 + 0.898i)21-s − 2.43i·23-s − 2.48·25-s + (5.01 − 1.35i)27-s + (4.34 − 2.50i)29-s + (−0.855 + 0.493i)31-s + ⋯ |
L(s) = 1 | + (−0.573 − 0.818i)3-s − 0.709·5-s + (0.402 − 0.915i)7-s + (−0.341 + 0.939i)9-s + 1.19i·11-s + (1.41 + 0.815i)13-s + (0.407 + 0.580i)15-s + (−0.775 + 1.34i)17-s + (1.46 − 0.844i)19-s + (−0.980 + 0.196i)21-s − 0.506i·23-s − 0.496·25-s + (0.965 − 0.260i)27-s + (0.806 − 0.465i)29-s + (−0.153 + 0.0886i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.895 + 0.444i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.895 + 0.444i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.216944009\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.216944009\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.994 + 1.41i)T \) |
| 7 | \( 1 + (-1.06 + 2.42i)T \) |
good | 5 | \( 1 + 1.58T + 5T^{2} \) |
| 11 | \( 1 - 3.95iT - 11T^{2} \) |
| 13 | \( 1 + (-5.09 - 2.93i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (3.19 - 5.53i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-6.37 + 3.68i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + 2.43iT - 23T^{2} \) |
| 29 | \( 1 + (-4.34 + 2.50i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (0.855 - 0.493i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-0.183 - 0.317i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-5.58 + 9.67i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (1.26 + 2.19i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-0.543 + 0.940i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-6.89 - 3.97i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-2.73 - 4.73i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-12.4 - 7.20i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (5.70 + 9.88i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 9.65iT - 71T^{2} \) |
| 73 | \( 1 + (-7.64 - 4.41i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (5.30 - 9.19i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (2.96 + 5.14i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (-4.70 - 8.15i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-10.4 + 6.05i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.15450102918832640705945201565, −8.843299147759764137732687748902, −8.099538035540563022584796441867, −7.19702083626047162063619263511, −6.81082874766683326279832370233, −5.70572210051697617723007865451, −4.48000295366775237280606810711, −3.90279548324459464714152024017, −2.11004320145430812804325071799, −0.969913276830428084512010135223,
0.865005427821782577566994347812, 3.04073583898555267754880926855, 3.66518796843746505915405584751, 4.92844714230243631886405059231, 5.63880453426916499862669590408, 6.31962300209262611416549304089, 7.72809157710831565907660629450, 8.468781016100802976135324896195, 9.156394496485312139154631862013, 10.04567821600096437981290222908