L(s) = 1 | + (−1.24 + 1.20i)3-s + 2.04·5-s + (−1.41 + 2.23i)7-s + (0.102 − 2.99i)9-s − 5.90i·11-s + (−0.139 − 0.0804i)13-s + (−2.55 + 2.46i)15-s + (2.77 − 4.81i)17-s + (4.02 − 2.32i)19-s + (−0.932 − 4.48i)21-s − 0.433i·23-s − 0.801·25-s + (3.48 + 3.85i)27-s + (−1.95 + 1.12i)29-s + (2.57 − 1.48i)31-s + ⋯ |
L(s) = 1 | + (−0.719 + 0.694i)3-s + 0.916·5-s + (−0.534 + 0.845i)7-s + (0.0341 − 0.999i)9-s − 1.78i·11-s + (−0.0386 − 0.0223i)13-s + (−0.658 + 0.636i)15-s + (0.674 − 1.16i)17-s + (0.922 − 0.532i)19-s + (−0.203 − 0.979i)21-s − 0.0903i·23-s − 0.160·25-s + (0.669 + 0.742i)27-s + (−0.363 + 0.209i)29-s + (0.463 − 0.267i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.956 + 0.291i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.956 + 0.291i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.324111876\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.324111876\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (1.24 - 1.20i)T \) |
| 7 | \( 1 + (1.41 - 2.23i)T \) |
good | 5 | \( 1 - 2.04T + 5T^{2} \) |
| 11 | \( 1 + 5.90iT - 11T^{2} \) |
| 13 | \( 1 + (0.139 + 0.0804i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-2.77 + 4.81i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-4.02 + 2.32i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + 0.433iT - 23T^{2} \) |
| 29 | \( 1 + (1.95 - 1.12i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-2.57 + 1.48i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-2.17 - 3.77i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-2.35 + 4.08i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (1.82 + 3.15i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (0.0650 - 0.112i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-10.7 - 6.23i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-3.22 - 5.58i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (5.98 + 3.45i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-7.64 - 13.2i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 1.48iT - 71T^{2} \) |
| 73 | \( 1 + (2.60 + 1.50i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-8.69 + 15.0i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (7.62 + 13.2i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (-4.04 - 7.01i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-2.61 + 1.50i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.866376474546178683025328639451, −9.246360197468040516505784642722, −8.640865388992377433291559034043, −7.22862430205111984800514043327, −6.05760880266294370976266201660, −5.75021415437612313497042235747, −4.99923466485868116260969745920, −3.49096723467003587006320911175, −2.71352348304417389596214519620, −0.75100083530228814737004643276,
1.27807786364267592713689625793, 2.21235994566358934347419155530, 3.82979547549095157912896307083, 4.94799536652708541156275590121, 5.84698767285463686130380060903, 6.59952883983131863575267964412, 7.37060978991974498822763801097, 8.025430521245510736027799813405, 9.639201668673246012272157335262, 9.929704608807586586355219383098