L(s) = 1 | + (1.11 + 1.32i)3-s + 3.53·5-s + (−1.30 − 2.30i)7-s + (−0.525 + 2.95i)9-s − 1.81i·11-s + (2.78 + 1.60i)13-s + (3.93 + 4.69i)15-s + (−2.93 + 5.08i)17-s + (2.09 − 1.20i)19-s + (1.61 − 4.28i)21-s + 3.84i·23-s + 7.48·25-s + (−4.50 + 2.58i)27-s + (5.79 − 3.34i)29-s + (4.21 − 2.43i)31-s + ⋯ |
L(s) = 1 | + (0.642 + 0.766i)3-s + 1.58·5-s + (−0.491 − 0.870i)7-s + (−0.175 + 0.984i)9-s − 0.548i·11-s + (0.771 + 0.445i)13-s + (1.01 + 1.21i)15-s + (−0.711 + 1.23i)17-s + (0.479 − 0.277i)19-s + (0.351 − 0.936i)21-s + 0.802i·23-s + 1.49·25-s + (−0.867 + 0.497i)27-s + (1.07 − 0.620i)29-s + (0.757 − 0.437i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.802 - 0.596i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.802 - 0.596i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.540495829\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.540495829\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-1.11 - 1.32i)T \) |
| 7 | \( 1 + (1.30 + 2.30i)T \) |
good | 5 | \( 1 - 3.53T + 5T^{2} \) |
| 11 | \( 1 + 1.81iT - 11T^{2} \) |
| 13 | \( 1 + (-2.78 - 1.60i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (2.93 - 5.08i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-2.09 + 1.20i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 - 3.84iT - 23T^{2} \) |
| 29 | \( 1 + (-5.79 + 3.34i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-4.21 + 2.43i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (0.905 + 1.56i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-5.03 + 8.71i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-2.36 - 4.09i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (3.96 - 6.86i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-2.26 - 1.30i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (4.40 + 7.63i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (8.98 + 5.18i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (3.92 + 6.79i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 7.62iT - 71T^{2} \) |
| 73 | \( 1 + (11.7 + 6.79i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (0.921 - 1.59i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-5.61 - 9.72i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (6.89 + 11.9i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (13.7 - 7.96i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.955740769703862966989782043043, −9.335975293512208177814105094540, −8.676351540455049080116677458638, −7.66290155096460377655683350170, −6.37145948077779619772616554009, −5.93049679828190202342903341750, −4.67349872288630225699432846976, −3.76283933144951515686854505625, −2.72236137150249945639958777889, −1.51448120926508876158409098759,
1.30486726928315987991841108504, 2.47845664390968039462273998826, 3.00000847370596078431687325890, 4.78825981571653142184992097978, 5.86337657955690766694244344135, 6.41867898668314672027018135333, 7.20086948327647742917211007195, 8.509500706260498795532955650581, 8.982724877216093983775592574365, 9.739207314110874462318959355827