L(s) = 1 | + (0.859 − 1.50i)3-s − 4.19·5-s + (−1.67 + 2.05i)7-s + (−1.52 − 2.58i)9-s + 1.66i·11-s + (5.64 + 3.25i)13-s + (−3.60 + 6.31i)15-s + (1.45 − 2.52i)17-s + (2.39 − 1.38i)19-s + (1.64 + 4.27i)21-s + 2.21i·23-s + 12.6·25-s + (−5.19 + 0.0719i)27-s + (5.69 − 3.28i)29-s + (−0.414 + 0.239i)31-s + ⋯ |
L(s) = 1 | + (0.495 − 0.868i)3-s − 1.87·5-s + (−0.631 + 0.775i)7-s + (−0.507 − 0.861i)9-s + 0.503i·11-s + (1.56 + 0.903i)13-s + (−0.931 + 1.63i)15-s + (0.353 − 0.611i)17-s + (0.549 − 0.317i)19-s + (0.359 + 0.933i)21-s + 0.462i·23-s + 2.52·25-s + (−0.999 + 0.0138i)27-s + (1.05 − 0.610i)29-s + (−0.0743 + 0.0429i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.988 - 0.149i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.988 - 0.149i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.186533063\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.186533063\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.859 + 1.50i)T \) |
| 7 | \( 1 + (1.67 - 2.05i)T \) |
good | 5 | \( 1 + 4.19T + 5T^{2} \) |
| 11 | \( 1 - 1.66iT - 11T^{2} \) |
| 13 | \( 1 + (-5.64 - 3.25i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-1.45 + 2.52i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-2.39 + 1.38i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 - 2.21iT - 23T^{2} \) |
| 29 | \( 1 + (-5.69 + 3.28i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (0.414 - 0.239i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (0.378 + 0.655i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (0.769 - 1.33i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-4.79 - 8.31i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (4.05 - 7.02i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-7.11 - 4.10i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (0.426 + 0.739i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-3.89 - 2.25i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-7.69 - 13.3i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 1.89iT - 71T^{2} \) |
| 73 | \( 1 + (6.22 + 3.59i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (5.52 - 9.57i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (0.162 + 0.280i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (2.86 + 4.95i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-4.22 + 2.44i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.737346357880541999264467133758, −8.843380930188493007821299221872, −8.348611398006663022981091503506, −7.47108423718835740231779631253, −6.84382723704366042126424102215, −5.94695237051766672339574263273, −4.46158634254992583897761299175, −3.54465709183102220985949955037, −2.76000823104019512958048750492, −1.04182673628219053375406826765,
0.68211364636371083336686748378, 3.27161139252071141448473189069, 3.53008201049222277229701543719, 4.27668602325735980308394188501, 5.47415218432291316209858627330, 6.70466224289311418564732617783, 7.72630270972489846219101280205, 8.335392116713995313494798642224, 8.829636523133824598169019348170, 10.23457454443023668646050986430