L(s) = 1 | + (−0.549 + 1.64i)3-s − 1.05·5-s + (−1.79 − 1.94i)7-s + (−2.39 − 1.80i)9-s + 6.24i·11-s + (−0.872 − 0.503i)13-s + (0.580 − 1.73i)15-s + (3.26 − 5.66i)17-s + (−1.73 + 1.00i)19-s + (4.17 − 1.88i)21-s − 4.40i·23-s − 3.88·25-s + (4.28 − 2.94i)27-s + (6.12 − 3.53i)29-s + (2.07 − 1.19i)31-s + ⋯ |
L(s) = 1 | + (−0.317 + 0.948i)3-s − 0.472·5-s + (−0.679 − 0.733i)7-s + (−0.798 − 0.601i)9-s + 1.88i·11-s + (−0.241 − 0.139i)13-s + (0.149 − 0.447i)15-s + (0.792 − 1.37i)17-s + (−0.397 + 0.229i)19-s + (0.911 − 0.412i)21-s − 0.917i·23-s − 0.777·25-s + (0.823 − 0.566i)27-s + (1.13 − 0.657i)29-s + (0.372 − 0.214i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.392 + 0.919i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.392 + 0.919i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.6304684672\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6304684672\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.549 - 1.64i)T \) |
| 7 | \( 1 + (1.79 + 1.94i)T \) |
good | 5 | \( 1 + 1.05T + 5T^{2} \) |
| 11 | \( 1 - 6.24iT - 11T^{2} \) |
| 13 | \( 1 + (0.872 + 0.503i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-3.26 + 5.66i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (1.73 - 1.00i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + 4.40iT - 23T^{2} \) |
| 29 | \( 1 + (-6.12 + 3.53i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-2.07 + 1.19i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (3.64 + 6.30i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-1.80 + 3.11i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (1.60 + 2.78i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-1.87 + 3.23i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (6.02 + 3.47i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (6.67 + 11.5i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-7.10 - 4.10i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.0613 - 0.106i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 5.37iT - 71T^{2} \) |
| 73 | \( 1 + (-14.4 - 8.33i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (4.43 - 7.67i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-1.07 - 1.86i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (2.23 + 3.86i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-0.960 + 0.554i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.915549136139457558228275819103, −9.356933171711601069357876297888, −8.096850234948067991058313571011, −7.22452720906037744242912544023, −6.51091805464255935937832128530, −5.22385527268791359944028099357, −4.45236307785833700111378241094, −3.74954450585125958686707335568, −2.51775311471793310572592984584, −0.32472186964510877894042375816,
1.25988087088156213412713062634, 2.81760321643129251624554778860, 3.58511448923488072539247019703, 5.20185635530317449033526709420, 6.10308180064013473204632884353, 6.44912226951785629667816263845, 7.78587195661962881126943794833, 8.316577129768055421718299571546, 9.033838634033583423697025975424, 10.26707620391927634193162433911