Properties

Label 2-1008-63.59-c1-0-23
Degree $2$
Conductor $1008$
Sign $0.392 + 0.919i$
Analytic cond. $8.04892$
Root an. cond. $2.83706$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.549 + 1.64i)3-s − 1.05·5-s + (−1.79 − 1.94i)7-s + (−2.39 − 1.80i)9-s + 6.24i·11-s + (−0.872 − 0.503i)13-s + (0.580 − 1.73i)15-s + (3.26 − 5.66i)17-s + (−1.73 + 1.00i)19-s + (4.17 − 1.88i)21-s − 4.40i·23-s − 3.88·25-s + (4.28 − 2.94i)27-s + (6.12 − 3.53i)29-s + (2.07 − 1.19i)31-s + ⋯
L(s)  = 1  + (−0.317 + 0.948i)3-s − 0.472·5-s + (−0.679 − 0.733i)7-s + (−0.798 − 0.601i)9-s + 1.88i·11-s + (−0.241 − 0.139i)13-s + (0.149 − 0.447i)15-s + (0.792 − 1.37i)17-s + (−0.397 + 0.229i)19-s + (0.911 − 0.412i)21-s − 0.917i·23-s − 0.777·25-s + (0.823 − 0.566i)27-s + (1.13 − 0.657i)29-s + (0.372 − 0.214i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.392 + 0.919i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.392 + 0.919i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1008\)    =    \(2^{4} \cdot 3^{2} \cdot 7\)
Sign: $0.392 + 0.919i$
Analytic conductor: \(8.04892\)
Root analytic conductor: \(2.83706\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1008} (689, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1008,\ (\ :1/2),\ 0.392 + 0.919i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6304684672\)
\(L(\frac12)\) \(\approx\) \(0.6304684672\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (0.549 - 1.64i)T \)
7 \( 1 + (1.79 + 1.94i)T \)
good5 \( 1 + 1.05T + 5T^{2} \)
11 \( 1 - 6.24iT - 11T^{2} \)
13 \( 1 + (0.872 + 0.503i)T + (6.5 + 11.2i)T^{2} \)
17 \( 1 + (-3.26 + 5.66i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (1.73 - 1.00i)T + (9.5 - 16.4i)T^{2} \)
23 \( 1 + 4.40iT - 23T^{2} \)
29 \( 1 + (-6.12 + 3.53i)T + (14.5 - 25.1i)T^{2} \)
31 \( 1 + (-2.07 + 1.19i)T + (15.5 - 26.8i)T^{2} \)
37 \( 1 + (3.64 + 6.30i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + (-1.80 + 3.11i)T + (-20.5 - 35.5i)T^{2} \)
43 \( 1 + (1.60 + 2.78i)T + (-21.5 + 37.2i)T^{2} \)
47 \( 1 + (-1.87 + 3.23i)T + (-23.5 - 40.7i)T^{2} \)
53 \( 1 + (6.02 + 3.47i)T + (26.5 + 45.8i)T^{2} \)
59 \( 1 + (6.67 + 11.5i)T + (-29.5 + 51.0i)T^{2} \)
61 \( 1 + (-7.10 - 4.10i)T + (30.5 + 52.8i)T^{2} \)
67 \( 1 + (-0.0613 - 0.106i)T + (-33.5 + 58.0i)T^{2} \)
71 \( 1 + 5.37iT - 71T^{2} \)
73 \( 1 + (-14.4 - 8.33i)T + (36.5 + 63.2i)T^{2} \)
79 \( 1 + (4.43 - 7.67i)T + (-39.5 - 68.4i)T^{2} \)
83 \( 1 + (-1.07 - 1.86i)T + (-41.5 + 71.8i)T^{2} \)
89 \( 1 + (2.23 + 3.86i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (-0.960 + 0.554i)T + (48.5 - 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.915549136139457558228275819103, −9.356933171711601069357876297888, −8.096850234948067991058313571011, −7.22452720906037744242912544023, −6.51091805464255935937832128530, −5.22385527268791359944028099357, −4.45236307785833700111378241094, −3.74954450585125958686707335568, −2.51775311471793310572592984584, −0.32472186964510877894042375816, 1.25988087088156213412713062634, 2.81760321643129251624554778860, 3.58511448923488072539247019703, 5.20185635530317449033526709420, 6.10308180064013473204632884353, 6.44912226951785629667816263845, 7.78587195661962881126943794833, 8.316577129768055421718299571546, 9.033838634033583423697025975424, 10.26707620391927634193162433911

Graph of the $Z$-function along the critical line