L(s) = 1 | + (1.31 + 1.12i)3-s + 0.0764·5-s + (2.39 + 1.11i)7-s + (0.462 + 2.96i)9-s + 5.38i·11-s + (−4.60 − 2.65i)13-s + (0.100 + 0.0860i)15-s + (−1.89 + 3.27i)17-s + (4.33 − 2.50i)19-s + (1.89 + 4.17i)21-s + 2.33i·23-s − 4.99·25-s + (−2.73 + 4.42i)27-s + (8.84 − 5.10i)29-s + (−4.97 + 2.87i)31-s + ⋯ |
L(s) = 1 | + (0.759 + 0.650i)3-s + 0.0341·5-s + (0.906 + 0.421i)7-s + (0.154 + 0.988i)9-s + 1.62i·11-s + (−1.27 − 0.737i)13-s + (0.0259 + 0.0222i)15-s + (−0.458 + 0.794i)17-s + (0.995 − 0.574i)19-s + (0.414 + 0.910i)21-s + 0.487i·23-s − 0.998·25-s + (−0.525 + 0.850i)27-s + (1.64 − 0.948i)29-s + (−0.893 + 0.516i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0206 - 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0206 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.093830843\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.093830843\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-1.31 - 1.12i)T \) |
| 7 | \( 1 + (-2.39 - 1.11i)T \) |
good | 5 | \( 1 - 0.0764T + 5T^{2} \) |
| 11 | \( 1 - 5.38iT - 11T^{2} \) |
| 13 | \( 1 + (4.60 + 2.65i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (1.89 - 3.27i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-4.33 + 2.50i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 - 2.33iT - 23T^{2} \) |
| 29 | \( 1 + (-8.84 + 5.10i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (4.97 - 2.87i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-0.354 - 0.613i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-3.29 + 5.71i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (0.716 + 1.24i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-1.46 + 2.53i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-10.4 - 6.05i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-0.289 - 0.502i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (2.40 + 1.38i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.63 - 4.56i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 3.32iT - 71T^{2} \) |
| 73 | \( 1 + (6.17 + 3.56i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-0.469 + 0.812i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-6.49 - 11.2i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (1.51 + 2.62i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-6.18 + 3.56i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.03223304067051182466955186337, −9.448857522987657575473797847445, −8.555612766742965754240807898870, −7.66665438216672402729823381954, −7.21372051170630200007692493516, −5.55010542971426236573813708181, −4.83710116347056105696210371597, −4.11154307256737423532803900116, −2.67223202807782141065270471550, −1.92311705014223126946319043881,
0.894139977709117169039007319397, 2.21734180895558281517852599078, 3.24160224276284693864265654925, 4.36887066896549771677172709275, 5.43713638074703426920090561231, 6.55542005076636979023687226976, 7.40489671597502143833814916525, 8.026387678408700172470381760845, 8.827934957071892303223259549446, 9.563481263802852469115683701879