L(s) = 1 | + (−0.478 − 1.66i)3-s + 2.74·5-s + (−1.70 + 2.02i)7-s + (−2.54 + 1.59i)9-s − 0.418i·11-s + (−1.32 − 0.765i)13-s + (−1.31 − 4.56i)15-s + (1.95 − 3.38i)17-s + (5.11 − 2.95i)19-s + (4.18 + 1.86i)21-s − 8.92i·23-s + 2.52·25-s + (3.86 + 3.47i)27-s + (6.00 − 3.46i)29-s + (3.05 − 1.76i)31-s + ⋯ |
L(s) = 1 | + (−0.276 − 0.961i)3-s + 1.22·5-s + (−0.644 + 0.764i)7-s + (−0.847 + 0.530i)9-s − 0.126i·11-s + (−0.367 − 0.212i)13-s + (−0.338 − 1.17i)15-s + (0.473 − 0.820i)17-s + (1.17 − 0.678i)19-s + (0.913 + 0.407i)21-s − 1.86i·23-s + 0.505·25-s + (0.744 + 0.667i)27-s + (1.11 − 0.643i)29-s + (0.548 − 0.316i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.160 + 0.987i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.160 + 0.987i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.579140262\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.579140262\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.478 + 1.66i)T \) |
| 7 | \( 1 + (1.70 - 2.02i)T \) |
good | 5 | \( 1 - 2.74T + 5T^{2} \) |
| 11 | \( 1 + 0.418iT - 11T^{2} \) |
| 13 | \( 1 + (1.32 + 0.765i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-1.95 + 3.38i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-5.11 + 2.95i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + 8.92iT - 23T^{2} \) |
| 29 | \( 1 + (-6.00 + 3.46i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-3.05 + 1.76i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (4.54 + 7.87i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (1.06 - 1.84i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-5.77 - 10.0i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-0.885 + 1.53i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-3.39 - 1.96i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-2.02 - 3.51i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (1.61 + 0.932i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (6.38 + 11.0i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 8.51iT - 71T^{2} \) |
| 73 | \( 1 + (-1.65 - 0.952i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (0.433 - 0.751i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-3.45 - 5.99i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (-4.88 - 8.46i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (0.200 - 0.115i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.691706930988940025327403519122, −9.050177946272078917241733827230, −8.092811594423497812520218704427, −7.05908483140396213184437854487, −6.30879427377406263948648661058, −5.68270242739235810983557368431, −4.87597308638124164486232106080, −2.82710184214511317716153921744, −2.40441483350191332632833595693, −0.806635659399389031507470686886,
1.40969702484354318975120933106, 3.05940542286613927498769634317, 3.84643393749376822410074296994, 5.09699989249805035155262107650, 5.72847912988435369508853326312, 6.57280489192956173317373786061, 7.57729754021600564736850504302, 8.823532518703448709674947062613, 9.617273674316013850363029246259, 10.14443605176267503329198546716