| L(s) = 1 | + 1.73i·3-s + (−0.621 − 0.358i)5-s + (−1 + 2.44i)7-s − 2.99·9-s + (1.5 − 0.866i)11-s + (−3.62 + 2.09i)13-s + (0.621 − 1.07i)15-s + (−2.74 − 1.58i)17-s + (−0.5 − 0.866i)19-s + (−4.24 − 1.73i)21-s + (2.37 + 1.37i)23-s + (−2.24 − 3.88i)25-s − 5.19i·27-s + (0.621 − 1.07i)29-s − 4·31-s + ⋯ |
| L(s) = 1 | + 0.999i·3-s + (−0.277 − 0.160i)5-s + (−0.377 + 0.925i)7-s − 0.999·9-s + (0.452 − 0.261i)11-s + (−1.00 + 0.579i)13-s + (0.160 − 0.277i)15-s + (−0.665 − 0.384i)17-s + (−0.114 − 0.198i)19-s + (−0.925 − 0.377i)21-s + (0.495 + 0.286i)23-s + (−0.448 − 0.776i)25-s − 0.999i·27-s + (0.115 − 0.199i)29-s − 0.718·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.818 + 0.574i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.818 + 0.574i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.3069191353\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.3069191353\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 - 1.73iT \) |
| 7 | \( 1 + (1 - 2.44i)T \) |
| good | 5 | \( 1 + (0.621 + 0.358i)T + (2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-1.5 + 0.866i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (3.62 - 2.09i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (2.74 + 1.58i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (0.5 + 0.866i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-2.37 - 1.37i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-0.621 + 1.07i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 4T + 31T^{2} \) |
| 37 | \( 1 + (-1.62 - 2.80i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (8.74 - 5.04i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (5.74 + 3.31i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 8.48T + 47T^{2} \) |
| 53 | \( 1 + (0.621 - 1.07i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + 6T + 59T^{2} \) |
| 61 | \( 1 + 6.92iT - 61T^{2} \) |
| 67 | \( 1 - 67T^{2} \) |
| 71 | \( 1 - 13.2iT - 71T^{2} \) |
| 73 | \( 1 + (7.5 + 4.33i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 - 2.02iT - 79T^{2} \) |
| 83 | \( 1 + (-5.74 + 9.94i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (14.2 - 8.21i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (5.74 + 3.31i)T + (48.5 + 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.28230202430087247212523190467, −9.537922618486151046668524012020, −8.971635386883574483563747552097, −8.275372210662248583009331383041, −7.00400775233247991759206791301, −6.10133393675261646504632070141, −5.11267688626246382646835678190, −4.40100400139387550154509181759, −3.29451855543711222353244721258, −2.28570804520946201145481766756,
0.13275566962847575912898837061, 1.64858666262960680356715500622, 2.94629856418937598033931406224, 3.98206653888076263213656094392, 5.18857338717967522545908782128, 6.28635967678504969859230528914, 7.13956181482599080980308426806, 7.48685893647279673662368995884, 8.516780930678185612986936226648, 9.423985735913397837799284685943