| L(s) = 1 | + (1.11 − 1.32i)3-s + (0.263 + 0.152i)5-s + (−2.36 + 1.17i)7-s + (−0.510 − 2.95i)9-s + (−0.437 + 0.252i)11-s + (−4.11 − 2.37i)13-s + (0.495 − 0.179i)15-s − 4.53i·17-s + 4.38·19-s + (−1.07 + 4.45i)21-s + (−2.76 − 1.59i)23-s + (−2.45 − 4.24i)25-s + (−4.48 − 2.62i)27-s + (−4.86 − 8.43i)29-s + (1.83 − 3.18i)31-s + ⋯ |
| L(s) = 1 | + (0.644 − 0.764i)3-s + (0.117 + 0.0680i)5-s + (−0.895 + 0.445i)7-s + (−0.170 − 0.985i)9-s + (−0.131 + 0.0761i)11-s + (−1.13 − 0.658i)13-s + (0.127 − 0.0462i)15-s − 1.09i·17-s + 1.00·19-s + (−0.235 + 0.971i)21-s + (−0.577 − 0.333i)23-s + (−0.490 − 0.849i)25-s + (−0.863 − 0.504i)27-s + (−0.904 − 1.56i)29-s + (0.330 − 0.572i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.691 + 0.722i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.691 + 0.722i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.218609298\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.218609298\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 + (-1.11 + 1.32i)T \) |
| 7 | \( 1 + (2.36 - 1.17i)T \) |
| good | 5 | \( 1 + (-0.263 - 0.152i)T + (2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (0.437 - 0.252i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (4.11 + 2.37i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + 4.53iT - 17T^{2} \) |
| 19 | \( 1 - 4.38T + 19T^{2} \) |
| 23 | \( 1 + (2.76 + 1.59i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (4.86 + 8.43i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-1.83 + 3.18i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + 3.70T + 37T^{2} \) |
| 41 | \( 1 + (-7.01 - 4.05i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-3.99 + 2.30i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-3.23 - 5.59i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 6.52T + 53T^{2} \) |
| 59 | \( 1 + (6.40 - 11.0i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (2.16 - 1.24i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (6.03 + 3.48i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 10.1iT - 71T^{2} \) |
| 73 | \( 1 + 7.13iT - 73T^{2} \) |
| 79 | \( 1 + (5.96 - 3.44i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-3.66 - 6.35i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 - 11.8iT - 89T^{2} \) |
| 97 | \( 1 + (-10.9 + 6.34i)T + (48.5 - 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.647201384559685261938303863301, −8.920784395626717923355375694419, −7.68894492049824064830020486167, −7.43371985955512668764982815972, −6.24880667799186689768904918991, −5.58839402618350693030058763636, −4.17851933075502886844370883058, −2.85781233206167191001328746055, −2.40105489243642293620275302985, −0.48048807576772511590371763130,
1.90191753983214935402151147369, 3.21002401756725825554503737464, 3.87912732244632706766092711859, 4.97557802309798586047625201921, 5.86975252525035510192289687407, 7.15474983648119229003173048141, 7.67802310933250028871125046955, 8.957756636102007496187906922415, 9.380364840701491231645898731574, 10.18912999547121503133895741535