L(s) = 1 | + (0.232 − 1.71i)3-s + 3.40i·5-s + (2.63 − 0.211i)7-s + (−2.89 − 0.798i)9-s + 5.50i·11-s + (1.96 − 1.13i)13-s + (5.84 + 0.791i)15-s + (−6.64 + 3.83i)17-s + (0.850 − 1.47i)19-s + (0.250 − 4.57i)21-s − 1.26i·23-s − 6.58·25-s + (−2.04 + 4.77i)27-s + (−3.04 + 5.26i)29-s + (−3.66 + 6.34i)31-s + ⋯ |
L(s) = 1 | + (0.134 − 0.990i)3-s + 1.52i·5-s + (0.996 − 0.0799i)7-s + (−0.963 − 0.266i)9-s + 1.66i·11-s + (0.545 − 0.314i)13-s + (1.50 + 0.204i)15-s + (−1.61 + 0.931i)17-s + (0.195 − 0.338i)19-s + (0.0546 − 0.998i)21-s − 0.264i·23-s − 1.31·25-s + (−0.393 + 0.919i)27-s + (−0.564 + 0.978i)29-s + (−0.657 + 1.13i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.471 - 0.882i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.471 - 0.882i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.549472663\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.549472663\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.232 + 1.71i)T \) |
| 7 | \( 1 + (-2.63 + 0.211i)T \) |
good | 5 | \( 1 - 3.40iT - 5T^{2} \) |
| 11 | \( 1 - 5.50iT - 11T^{2} \) |
| 13 | \( 1 + (-1.96 + 1.13i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (6.64 - 3.83i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.850 + 1.47i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + 1.26iT - 23T^{2} \) |
| 29 | \( 1 + (3.04 - 5.26i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (3.66 - 6.34i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (0.928 - 1.60i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-4.99 + 2.88i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-6.68 - 3.85i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-0.822 - 1.42i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (2.90 + 5.02i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-3.48 + 6.04i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-9.64 + 5.56i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-7.13 - 4.12i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 5.47iT - 71T^{2} \) |
| 73 | \( 1 + (12.5 - 7.25i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-2.96 + 1.71i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-5.67 + 9.82i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (-4.67 - 2.69i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (0.903 + 0.521i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.39885801492801843161815535194, −9.129499146654063398492726234303, −8.282543031749874971531887744683, −7.30445569282647725541438345686, −6.98520208866097276178159169884, −6.15259358403294445847894066162, −4.91217792462537627816693131224, −3.70136759835118206824699747270, −2.42056240382354998355621456220, −1.74862324058594211006931790973,
0.69616525995507710402483337648, 2.31034269603533811801106592491, 3.88824849024461437394817934996, 4.46105130662487178249373749129, 5.42261807689510934648857602977, 5.93919959595872591189285999577, 7.68235363051066224934076918477, 8.519446159537543186481878939625, 8.922840362629065399372529198228, 9.491805766070882517921617214505