L(s) = 1 | + (1.72 − 0.108i)3-s + 0.435i·5-s + (−2.49 + 0.891i)7-s + (2.97 − 0.376i)9-s + 4.82i·11-s + (−4.31 + 2.49i)13-s + (0.0473 + 0.752i)15-s + (−4.92 + 2.84i)17-s + (−3.70 + 6.42i)19-s + (−4.20 + 1.81i)21-s − 3.16i·23-s + 4.81·25-s + (5.10 − 0.974i)27-s + (2.49 − 4.32i)29-s + (1.32 − 2.30i)31-s + ⋯ |
L(s) = 1 | + (0.998 − 0.0628i)3-s + 0.194i·5-s + (−0.941 + 0.337i)7-s + (0.992 − 0.125i)9-s + 1.45i·11-s + (−1.19 + 0.691i)13-s + (0.0122 + 0.194i)15-s + (−1.19 + 0.689i)17-s + (−0.851 + 1.47i)19-s + (−0.918 + 0.395i)21-s − 0.658i·23-s + 0.962·25-s + (0.982 − 0.187i)27-s + (0.463 − 0.802i)29-s + (0.238 − 0.413i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.167 - 0.985i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.167 - 0.985i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.553492598\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.553492598\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-1.72 + 0.108i)T \) |
| 7 | \( 1 + (2.49 - 0.891i)T \) |
good | 5 | \( 1 - 0.435iT - 5T^{2} \) |
| 11 | \( 1 - 4.82iT - 11T^{2} \) |
| 13 | \( 1 + (4.31 - 2.49i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (4.92 - 2.84i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (3.70 - 6.42i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + 3.16iT - 23T^{2} \) |
| 29 | \( 1 + (-2.49 + 4.32i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-1.32 + 2.30i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-1.06 + 1.84i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-0.112 + 0.0650i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-6.53 - 3.77i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-4.29 - 7.43i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (5.60 + 9.71i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (6.20 - 10.7i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-7.65 + 4.42i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.811 - 0.468i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 6.27iT - 71T^{2} \) |
| 73 | \( 1 + (-11.2 + 6.48i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (2.98 - 1.72i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-3.68 + 6.38i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (13.2 + 7.65i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (2.83 + 1.63i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.924932523267726629136566787213, −9.468507512827079394774681143568, −8.613008028109480945517402157100, −7.69694171653545515458814468634, −6.84060504585646166945617797632, −6.26979029370775484479710638064, −4.58174987154155678833221094116, −4.05067980967400903272488925863, −2.60214819140874518825280670404, −2.04449939890005357081380413636,
0.59019925792482768059002110831, 2.60026992035926355470873853830, 3.10754053004774295464536344156, 4.31794140798068870306600236828, 5.25563443935245905545416164796, 6.66302786865743578234864757706, 7.12089373967582856418113858946, 8.259480072821472443485704816814, 8.983680982006736801496390456988, 9.470504528485608009819404427726