L(s) = 1 | + (1.72 − 0.164i)3-s + 2.22i·5-s + (0.517 − 2.59i)7-s + (2.94 − 0.567i)9-s − 3.59i·11-s + (0.699 − 0.404i)13-s + (0.365 + 3.82i)15-s + (1.37 − 0.796i)17-s + (1.63 − 2.83i)19-s + (0.466 − 4.55i)21-s + 1.68i·23-s + 0.0687·25-s + (4.98 − 1.46i)27-s + (−2.13 + 3.69i)29-s + (−0.630 + 1.09i)31-s + ⋯ |
L(s) = 1 | + (0.995 − 0.0949i)3-s + 0.993i·5-s + (0.195 − 0.980i)7-s + (0.981 − 0.189i)9-s − 1.08i·11-s + (0.194 − 0.112i)13-s + (0.0942 + 0.988i)15-s + (0.334 − 0.193i)17-s + (0.375 − 0.649i)19-s + (0.101 − 0.994i)21-s + 0.352i·23-s + 0.0137·25-s + (0.959 − 0.281i)27-s + (−0.395 + 0.685i)29-s + (−0.113 + 0.196i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.952 + 0.303i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.952 + 0.303i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.417581045\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.417581045\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-1.72 + 0.164i)T \) |
| 7 | \( 1 + (-0.517 + 2.59i)T \) |
good | 5 | \( 1 - 2.22iT - 5T^{2} \) |
| 11 | \( 1 + 3.59iT - 11T^{2} \) |
| 13 | \( 1 + (-0.699 + 0.404i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-1.37 + 0.796i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.63 + 2.83i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 - 1.68iT - 23T^{2} \) |
| 29 | \( 1 + (2.13 - 3.69i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (0.630 - 1.09i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-3.94 + 6.83i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (7.57 - 4.37i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-7.47 - 4.31i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-0.332 - 0.576i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-6.27 - 10.8i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-2.15 + 3.73i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (7.44 - 4.29i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (0.0888 + 0.0512i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 11.8iT - 71T^{2} \) |
| 73 | \( 1 + (5.30 - 3.06i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-3.73 + 2.15i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-5.33 + 9.23i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (-1.69 - 0.981i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (15.3 + 8.84i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.904256012549876105934210074629, −9.081892079662509689336358472396, −8.185374326674807387188691703395, −7.36228829900392394612972700079, −6.88850156136603645630615585038, −5.73117236578961775901330158226, −4.34602105704763416221215674529, −3.39378866083512914108172815352, −2.77533501632351448420437160768, −1.17211172127208161048503406789,
1.52408127684959928879759650201, 2.45096777398597183959500021048, 3.77237033642248481966506861827, 4.70916871306641868541708165796, 5.49177415759404401131807697558, 6.73429837681107909221296141959, 7.85058381446526687093042505478, 8.353750752821709598894005942071, 9.203555470497777387481383410081, 9.660744901479750935838128016905