L(s) = 1 | + (1.33 + 1.10i)3-s − 1.09i·5-s + (−1.10 + 2.40i)7-s + (0.576 + 2.94i)9-s + 0.100i·11-s + (4.27 − 2.46i)13-s + (1.20 − 1.46i)15-s + (3.23 − 1.86i)17-s + (2.54 − 4.41i)19-s + (−4.12 + 2.00i)21-s + 9.20i·23-s + 3.79·25-s + (−2.46 + 4.57i)27-s + (−3.96 + 6.86i)29-s + (−2.41 + 4.18i)31-s + ⋯ |
L(s) = 1 | + (0.772 + 0.635i)3-s − 0.490i·5-s + (−0.416 + 0.908i)7-s + (0.192 + 0.981i)9-s + 0.0303i·11-s + (1.18 − 0.683i)13-s + (0.311 − 0.378i)15-s + (0.784 − 0.453i)17-s + (0.584 − 1.01i)19-s + (−0.899 + 0.436i)21-s + 1.91i·23-s + 0.759·25-s + (−0.475 + 0.879i)27-s + (−0.735 + 1.27i)29-s + (−0.434 + 0.752i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.512 - 0.858i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.512 - 0.858i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.106994759\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.106994759\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-1.33 - 1.10i)T \) |
| 7 | \( 1 + (1.10 - 2.40i)T \) |
good | 5 | \( 1 + 1.09iT - 5T^{2} \) |
| 11 | \( 1 - 0.100iT - 11T^{2} \) |
| 13 | \( 1 + (-4.27 + 2.46i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-3.23 + 1.86i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-2.54 + 4.41i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 - 9.20iT - 23T^{2} \) |
| 29 | \( 1 + (3.96 - 6.86i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (2.41 - 4.18i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (2.77 - 4.80i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (3.91 - 2.25i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-1.73 - 1.00i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-3.17 - 5.49i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (6.53 + 11.3i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-1.44 + 2.50i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-8.21 + 4.74i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-10.8 - 6.28i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 14.5iT - 71T^{2} \) |
| 73 | \( 1 + (-5.92 + 3.41i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (2.31 - 1.33i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-0.112 + 0.195i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (4.90 + 2.83i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-6.47 - 3.73i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.787547535697460103834295679009, −9.257961631330251870646248350062, −8.624360959562803034322487896870, −7.85224410814036816825103416893, −6.80094825210541738988479871394, −5.35062992918621308804164591881, −5.16467267746644567868210713906, −3.47696154500317964363651133365, −3.11014050057083052136654233681, −1.50869077416332074531909191691,
1.00444367916422390548908574285, 2.33079724182407551987153135360, 3.60196328523233996988897801639, 4.03661727860176303528038260260, 5.86229385567716668270554583023, 6.57714535248317992342009819214, 7.31646284060983241220001932706, 8.112090769813129594647816616830, 8.882352250628396356721136047521, 9.855987952667230692244615473313