L(s) = 1 | + (−0.232 − 1.71i)3-s − 3.40i·5-s + (−2.63 − 0.211i)7-s + (−2.89 + 0.798i)9-s + 5.50i·11-s + (1.96 + 1.13i)13-s + (−5.84 + 0.791i)15-s + (−6.64 − 3.83i)17-s + (−0.850 − 1.47i)19-s + (0.250 + 4.57i)21-s − 1.26i·23-s − 6.58·25-s + (2.04 + 4.77i)27-s + (−3.04 − 5.26i)29-s + (3.66 + 6.34i)31-s + ⋯ |
L(s) = 1 | + (−0.134 − 0.990i)3-s − 1.52i·5-s + (−0.996 − 0.0799i)7-s + (−0.963 + 0.266i)9-s + 1.66i·11-s + (0.545 + 0.314i)13-s + (−1.50 + 0.204i)15-s + (−1.61 − 0.931i)17-s + (−0.195 − 0.338i)19-s + (0.0546 + 0.998i)21-s − 0.264i·23-s − 1.31·25-s + (0.393 + 0.919i)27-s + (−0.564 − 0.978i)29-s + (0.657 + 1.13i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.471 - 0.882i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.471 - 0.882i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.2375953907\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2375953907\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.232 + 1.71i)T \) |
| 7 | \( 1 + (2.63 + 0.211i)T \) |
good | 5 | \( 1 + 3.40iT - 5T^{2} \) |
| 11 | \( 1 - 5.50iT - 11T^{2} \) |
| 13 | \( 1 + (-1.96 - 1.13i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (6.64 + 3.83i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (0.850 + 1.47i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + 1.26iT - 23T^{2} \) |
| 29 | \( 1 + (3.04 + 5.26i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-3.66 - 6.34i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (0.928 + 1.60i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-4.99 - 2.88i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (6.68 - 3.85i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (0.822 - 1.42i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (2.90 - 5.02i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (3.48 + 6.04i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-9.64 - 5.56i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (7.13 - 4.12i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 5.47iT - 71T^{2} \) |
| 73 | \( 1 + (12.5 + 7.25i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (2.96 + 1.71i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (5.67 + 9.82i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (-4.67 + 2.69i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (0.903 - 0.521i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.144165672866984035110264362417, −8.773430647806394657348480123660, −7.63742923347836150031982456599, −6.84588671286080739304290606613, −6.16478145314348071941328911646, −4.92088696943347008728664211061, −4.32691120764782305247291634871, −2.61433336097242330259083922439, −1.52195635545302094409207684475, −0.10648227656325161106911851626,
2.60608730985015407598212651109, 3.42635248256182202784453999043, 3.96670390809455813210879985837, 5.66457361267712011402390227782, 6.20049764391988087949672537662, 6.84943793122915607743108813141, 8.279496915470700275019147902376, 8.903567425348861596278124904700, 9.895423749651336018515332223348, 10.63799024126374326040017614389